DOCUMENT RESUME ED 964 704 CS 000 079 ٤٠ **AUTHOR** Lloyd, Dee Norman TITLE Reading Achievement and Its Relationship to Academic Performance; Part Three: Relationships of Family Background and Third Grade Performance to Sixth Grade Reading Achievement, Laboratory Paper #29, and Supplemental Data on High and Low IQ and SES Groups in Four Race-by-Sex Samples. INSTITUTION National Inst. of Mental Health, Rockville, Md. 72 PUB DATE 162p. EDRS PRICE MF-\$0.65 HC-\$6.58 **DESCRIPTORS** *Academic Performance; *Age; Caucasians; Grade Repetition: Marital Status: Negroes: Parent Influence; *Reading Achievement; *Sex Differences; *Socioeconomic Influences #### **ABSTRACT** Students whose reading achievement was average, below average, and above average were compared on measures of educational and occupational background, family characteristics, and elementary school performance prior to grade 6. Results were analyzed separately by sex, race (Negro and Caucasian), both sexes and races combined, and upper and lower socioeconomic and mental ability levels. Findings which achieved statistical significance included: (1) differences among achievement groups in parents' marital status were significant only in the Caucasian male sample; (2) parents' education and occupation had a greater relationship to reading achievement for girls than for boys and particularly for girls with higher IQ scores; (3) among those retained in a grade, differences among achievement groups were significant only in the Negro female sample; (4) the difference between achievement groups on socioeconomic level of father was significant for Negro females; and (5) the decrease in performance from grade 3 to grade 6 was significantly greater for underachievers than for average and overachievers. Supplemental Data on High and Low IQ and SES Groups in Four Race-by-Sex Samples included. See Part One [ED 034 660] and Part Two [CS000078]. (Author/RD) U.S. DEPARTMENT OF HEALTH. EDUCATION & WELFARE OFFICE OF EDUCATION THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGINATING IT. POINTS OF VIEW OR OPINIONS STATED DO NOT NECESSARILY REPRESENT OFFICIAL OFFICE OF EDUCATION POSITION OR POLICY. Reading Achievement and Its Relationship to Academic Performance Part III: Relationships of Family Background and Third Grade Performance to Sixth Grade Reading Achievement Dee Norman Lloyd Laboratory Paper #29 Personal and Social Organization Section Mental Health Study Center National Institute of Mental Health 1972 #### Summary Underachievers, average achievers, and overachievers in reading, classified according to the discrepancy between 6th grade reading score and reading level predicted from a 6th grade test of mental ability, were compared on measures of educational and occupational background, family characteristics, and elementary school performance prior to the 6th grade. Data were analyzed separately for sex and race (Negro and white) samples and the four samples combined. In addition, relationships in the combined samples were compared across upper and lower levels of socio-economic status (SES) and upper and lower levels of mental ability (6th grade IQ scores above and below 100). In the combined samples, parents of underachievers had a significantly lower mean educational level, occupational level, and SES level (a weighted combination of father's educational and occupational level) than parents of average or overachievers. The relationship of these variables to reading achievement, however, was small, and differences were not significant in all samples and stratifications. The differences among achievement groups in educational and occupational background were most significant in the upper SES levels, indicating that families at successively higher educational levels (college graduates and above) produce the fewest underachievers. There was also an interaction of educational and occupational background, sex, IQ, and reading achievement. Parents' education and occupation had a greater relationship to reading achievement (or influence on, if causality is assumed) for girls than for boys, and particularly for girls with higher IQ scores. Differences among the achievement groups on other measures of family characteristics were either not significant or showed negligible relationships to reading achievement. Underachievers had a higher mean number of siblings than average achievers; however, this difference was only significant among white males in the lower IQ range. Difference among achievement groups in marital status of parents was also found to be significant only in the white male sample. White male underachievers in lower SES and lower IQ ranges came from broken homes more often than did average and overachievers. Among white males in the upper SES and upper IQ ranges, ifferences were not significant. In the Negro male and Negro female samples, there were very few significant differences on SES and family characteristic measures. In the Negro male sample, there were no significant differences on any of these measures. The difference between achievement groups on educational and occupational levels of father for Negro females approached significance; the difference on SES . Well was significant. In part, failure to find significant differences in the Negro samples could be attributed to the restricted variance on some measures. In the Negro samples, number of siblings was not linearly related to reading achievement. Among both Negro males and Negro females, the lowest percentage of underachievers was found in small families (0 to 2 siblings) and large families (6 or more siblings). In contrast to the pattern in the white male and white female samples, the highest percentage of average and overachievers in the Negro samples came from large families. Measures of earlier elementary school performance consisted of 3rd grade reading and IQ test scores and whether or not subjects had been retained in grade during elementary school. These data were available only for those subjects in the 6th grade cohort who were in the school system in earlier grades. Although underachievers were retained more often in elementary school grades than average or overachievers, the difference among achievement groups was only significant in the Negro female sample. Comparison of achievement groups on 3rd and 6th grade reading performance produced five findings: (1) underachievers were reading at a significantly lower level than average or overachievers in the 3rd grade, (2) there was a decrease from the 3rd to the 6th grade in reading relative to grade placement for underachievers and average achievers, (3) overachievers, on the other hand, maintained the same superior level of performance from grades 3 to 6, (4) the decrease in performance from grades 3 to 6 was significantly greater for underachievers than for average and overachievers, (5) the degree to which scores changed from grades 3 to 6 was related to reading level (grade placement) in the 3rd grade. The findings indicate that normative level of achievement and relative vi level of achievement tap different aspects of reading ability and have different implications for reading achievement over time. Both should be considered in the diagnosis of reading difficulties and planning of reading programs. ## Table of Contents | rage | |-----------|--------|------|------|------|------|------|--------|------|------|------|-----|-----|-----|---|---|---|---|---|------| | Summary | • • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | iii | | Introduc | tion | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 1 | | Method | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 2 | | Sub | jects | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 2 | | Var | iable | s | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | 2 | | Pro | cedur | 28 | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 4 | | Results | | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | • | 7 | | Gen | eral] | Dist | rib | uti | ons | or | a Va | aria | ablo | 28 | • | • | • | • | • | • | • | • | 7 | | Rela | ation | ship | of | Ed | luce | tic | ona | 1 L | eve | 1 o | f P | are | nts | | | | | | | | | to 1 | Read | ling | ; Ac | hie | ver | nen | t | • | • | • | • | • | • | • | • | • | • | 12 | | Rela | ation | ship | of | 00 | cup | at: | ion | al : | Lev | el (| of | Fat | her | | | | | | | | | to 1 | Read | ling | Ac | hie | ver | nen: | t | • | • | • | • | • | | • | • | • | • | 18 | | Rela | ation | ship | of | SE | :S t | :o 1 | Read | din | g A | chi | eve | men | t | • | • | • | • | • | 20 | | Rela | ation | ship | of | Ot | her | Fa | am i : | 1y (| Cha | rac | ter | ist | ics | | | | | | | | | to 1 | Read | ling | Ac | hie | ver | nen | t | • | • | • | • | • | • | • | • | • | • | 23 | | Eler | nenta | ry S | icho | 01 | Pro | gre | ess: | ion | • | • | • | • | • | • | • | • | • | • | 28 | | Rela | ation | ship | o of | 31 | d G | rac | ie : | [es | t Po | erfo | orm | anc | e | | | | | | | | | to 1 | Read | ling | Ac | hie | ver | nen | t | • | • | • | • | • | • | | • | • | • | 30 | | Discussio | on . | • | • | • | • | | • | • | • | • | • | • | • | • | • | • | • | • | 41 | | Fami | ily Cl | nara | cte | ris | tic | 8 | • | • | • | • | • | • | • | • | • | • | • | • | 41 | | Race | e Dif | fere | nce | 8 | • | • | • | • | • | • | • | • | • | • | • | • | | • | 44 | | Rete | ention | 1 (N | lon- | pro | mot | ior | 1) : | in I | Eler | nent | tar | У | | | | | | | | | | Scho | 001 | Gra | des | | • | • | • | • | • | • | • | | | • | • | • | • | 45 | | 3rd | to 6t | :h G | rad | e R | ead | ing | g Pe | erfo | orma | ance | • | • | • | • | • | • | • | • | 46 | | Reference | es . | _ | _ | _ | | _ | | _ | | | _ | | | | | | | | 52 | # Tables | | | Pag | |----------
--|-----| | Table 1: | Means and Standard Deviations on Measures of Family Characteristics for Race-by-Sex and Combined Samples | 8 | | Table 2: | Marital Status of Parents of Race-by-Sex and Combined Samples | 9 | | Table 3: | Elementary School Progression for Race-by-Sex and Combined Samples | 9 | | Table 4: | Mean Performance on 3rd Grade Standardized Tests for Race, Sex, and Combined Samples | 11 | | Table 5: | Mean Educational Level of Father of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | 13 | | Table 6: | Mean Educational Level of Mother of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | 16 | | Table 7: | Mean Occupational Level of Father of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | 19 | | Table 8: | Mean SES Level of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | 22 | | Table 9: | Mean Number of Siblings of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | 24 | | Table 10 | Marital Status of Parents of Under-, Average, and Overachievers in Combined Samples, High and Low SES and IQ Levels and Race and Sex Samples | 27 | | | | Page | |-----------|---|------| | Table 11: | Percentage of Under-, Average, and Overachievers Retained in Elementary School in Combined Samples, High and Low SES and IQ Levels and Race and Sex Samples | 29 | | Table 12: | Mean 3rd Grade CTMM IQ Score of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Levels and Race and Sex Samples | 31 | | Table 13: | Mean Performance on the 3rd Grade CAT Reading
Subtest of Under-, Average, and Overachievers
in the Combined Samples, High and Low SES and
IQ Levels and Race and Sex Samples | 33 | | Table 14: | Mean 6th Grade CAT Reading Score and Mean
6th Grade CTMM IQ Score for Subjects With
3rd Grade CAT Reading Scores (Figures in
parentheses are for the complete 6th grade | | | | sample) | 35 | # Figures | | | rage | |-----------|--|------| | Figure 1: | Mean 3rd and 6th Grade Reading Levels of | | | | Under-, Average, and Overachievers Corrected for Grade Level (All Subjects With Both | | | | Scores, N=2241) | 37 | | Figure 2: | Mean 3rd and 6th Grade Reading Level of Under-, Average, and Overachievers Corrected for Grade | | | | Level (Race and Sex Samples) | 38 | ## Relationships of Family Background and Third Grade Performance to Sixth Grade Reading Achievement #### Dee Norman Lloyd Research findings have generally shown that measures of socioeconomic level are positively related to academic performance (Lavin, D. E., 1965). In studies where level of intelligence has been controlled, socio-economic variables have still differentiated underachievers from average or overachievers (Vane, J. R., 1966). From the review of the literature, however, most studies have used a matching procedure to equate groups on IQ level or socio-economic status, and the focus of investigation has been largely on underachievers in the upper range of mental ability. The procedure in the present study provided an assessment of reading achievement over the entire range of mental ability. Three achievement groups (underachievers, average achievers, and overachievers) were formed on the basis of discrepancy between obtained reading level and reading level predicted by a test of general mental ability. These groups were compared on measures of parents! education and occupation, family characteristics, and measures of elementary school performance. Since the achievement groups did not differ significantly in their mean IQ scores in the 6th grade, the relationships of these variables to reading achievement would indicate relationships over and above those accounted for by mental ability. More specific relationships across achievement groups were also > investigated by stratifying the sample into high and low IQ and SES levels, and comparisons were also made within the four race-by-sex samples in the study population. #### Method ## Subjects Subjects were 3651 6th grade students who had both the CTMM IQ score and (Reading score that were used to define achievement groups (see Part I). Analyses were performed for this sample (combined samples) and for the four separate race and sex samples. The individual race and sex samples consisted of 1624 white males (WM), 1600 white females (WF), 231 Negro males (NM), and 196 Negro females (NF). Analyses were also performed with the combined samples stratified (1) into high and low SES levels and (2) into high and low IQ score levels. High and low SES groups consisted of 1487 and 1971 subjects. High and low IQ groups consisted of 2157 and 1494 subjects, respectively. ### **Variables** The independent variables in this analysis were measures of occupational level, educational level, and marital status of parents, number of siblings, elementary school progression, and performance on standardized tests in the 3rd grade. All measures of parent and family characteristics reflected the status that was recorded in school records when the subject was in the 6th grade. Educational levels of the subject's father and mother were coded into three categories: elementary, high school, and beyond high school. These three levels were coded 6, 4, and 1, respectively, in order to compute the Hollingshead Two-Factor Index of Social Position (Hollingshead, 1957). The occupational level of the father consisted of a seven-category scale adapted from the occupational scale of the Index of Social Position (Hollingshead and Redlich, 1958). A summary of the seven occupational levels in this scale is as follows: Level 1: Higher executives, proprietors, and professionals Level 2: Lesser executives, proprietors, and professionals Level 3: Administrative, small business owners, minor and semi-professionals Level 4: Clerical, sales, and technicians Level 5: Skilled trades Level 6: Semi-skilled trades Level 7: Unskilled workers The Hollingshead Two-Factor Index (SES level) consisted of a weighted composite of the occupational and educational levels (occupation weighted 7 and education weighted 4). The father's educational and occupational level were used to compute the SES level if that information was available. If information for the father was not available, or if the father was not living with the family, the index was computed from information available for the mother. 1 5 The scaling of educational, occupational, and SES levels had a reverse correspondence to amount of education, etc. In interpreting results involving these measures, lower mean scores indicate higher levels. Measures of family characteristics were the number of siblings of the subject and the marital status of parents. The former variable was coded directly, the latter consisted of two categories indicating (1) that the subject's natural parents were alive and married, and (2) that the natural parents were separated, divorced, deceased, or remarried. Measures of elementary school performance prior to the 6th grade were the 3rd grade California Achievement Test Total Reading score (3rd grade CAT Reading score), the IQ score from the 3rd grade California Test of Mental Maturity (3rd grade CTMM IQ score), and whether or not a subject had been retained in grade during elementary school (school progression). Third grade test scores were available for only those subjects in the 6th grade cohort who were in the school system from the 3rd to 6th grades. This was approximately 60% of the original 6th grade sample. #### Procedures A discrepancy score that represented the difference between expected reading level (predicted from the 6th grade CTMM IQ score) and obtained reading level (6th grade CAT Total Reading score) was used to define three achievement groups: underachievers, average The 3rd grade CAT reading test was administered between the 4th and 6th month of the school year (1952-53 for normal progression subjects). Test was the 1950 edition, primary form AA. The IQ score was from the 1950 edition, short form, primary level California Test of Mental Maturity. achievers, and overachievers. Achievement groups were formed on the basis of the standard error of estimate (S.E.E.) for predicting the 6th grade CAT Reading score from the 6th grade CTMM IQ score. Underachievers had discrepancy scores below 1 S.E.E.; average achievers had discrepancy scores between plus and minus 1 S.E.E.; and overachievers had discrepancy scores above 1 S.E.E. (see Part I). In the race and sex samples, the expected reading scores were derived from the regression of the IQ score and the reading score for each sample (see Part II). That is, the definition of under-, average, and overachievement was controlled for differences in the relationship of IQ and reading level that might exist across sex and race. Standard errors of estimate in the four race and sex samples, however, were similar enough to permit the use of one cut-off score for defining achievement groups in all samples (discrepancy score of plus and minus .85). Only in the Negro female sample, where the standard error of estimate was .768, did this affect the classification of subjects. The Pearson product-moment correlations between the 6th grade CTMM IQ score and the 6th grade CAT
Reading score were of different magnitude, particularly across race. Coefficients in the four samples were .82 (WM), .78 (WF), .61 (NM), and .74 (NF). ⁴Discrepancy scores were rounded to one-tenth of a grade-equivalent score so that subjects with a score of -.9 or below were classified as underachievers, and subjects with scores of +.9 or above were classified as overachievers. Four Negro females who had scores of -.8 and would have been classified as underachievers by the S.E.E. in that sample were classified as average achievers for this analysis. One Negro female had a score of +.8 and was classified as an average achiever rather than as an overachiever. In order to investigate the relationship of reading achievement to other measures at different levels of mental ability, two groups were formed on the basis of scores on the 6th grade CTMM. The high IQ level consisted of subjects with 6th grade CTMM IQ scores of 100 and above; the low IQ level consisted of subjects with scores below 100. For comparison of reading achievement in groups with d fferent socio-economic status background, subjects were classified into high and low groups on the Two-Factor Index of Social Position. High SES level consisted of subjects from levels 1, 2, and 3; low SES level consisted of subjects from levels 4 and 5. Statistical analyses consisted of analysis of variance tests across the three achievement groups, with the omega² statistic as an index of association, or chi square comparisons where appropriate. The comparisons of high and low SES and IQ levels are reported for the combined samples, i.e., under-, average, and overachievers in all four race and sex samples. Since the majority of Negro subjects had IQ scores below 100 and were concentrated in the lower SES levels, most Negro subjects were included in the lower levels of these stratifications. Comparisons of high and low IQ and SES groups within the separate race-by-sex samples were made to determine possible interaction effects and to pinpoint specific subgroups contributing to significant differences across achievement groups. For these analyses, high and low IQ and SES were defined in the Negro samples to achieve a more balanced comparison. High and low IQ levels were defined as an IQ score of 86 and above and 85 and below, respectively. High SES was defined as levels 1 through 4 of the two-factor index, low SES as level 5. from these data will be referred to only when they add to or contradict results obtained from stratifications in the combined samples. Data for the IQ and SES groups in the separate race-by-sex samples are contained in a supplement to this study, copies of which are available from the author. #### Results #### General Distributions on Variables Distribution of the four race-by-sex samples on the experimental variables were compared to provide a basis for interpreting differences across samples that might be found when the relationships to reading achievement were assessed. In Table 1, means and standard deviations of the four race-bysex samples and the combined samples on family measures are presented. Mean differences across race samples were significant on all variables. The Negro samples had lower mean educational level of father, educational level of mother, occupational level of father, and SES level than the white samples, and Negro samples had a higher mean number of siblings than the white samples. Differences on these variables between white males and white females and between Negro males and Negro females were not significant. Percentages in categories of marital status of parents are given in Table 2. The chi-square tests between race samples were significant (p < .02 and p < .01), with the Negro samples showing a higher percentage than the white samples of parents who were separated, divorced, or deceased. Differences between sexes within race were not significant, although there was a higher percentage of separated, divorced, or deceased parents among white females (12%) than among white males (9.9%). Table 1 Means and Standard Deviations on Measures of Family Characteristics for Race-by-Sex and Combined Samples | Variables | | White
Males | White
Females | Negro
Males | Negro
Females | Combined Samples | |--------------------|----|----------------|------------------|----------------|------------------|------------------| | Educational level | N | 1547 | 1534 | 213 | 184 | 3478 | | of father | M | 3.60 | 3.66 | 5.32 | 5.20 | 3.82 | | | SD | 1.74 | 1.74 | 1.15 | 1.24 | 1.76 | | Educational level | N | 1549 | 1540 | 217 | 184 | 3490 | | of mother | M | 3.66 | 3.71 | 5.07 | 4.90 | 3.83 | | | SD | 1.55 | 1.54 | 1.19 | 1.35 | 1.57 | | Number of | N | 1624 | 1600 | 231 | 196 | 3651 | | sibl ings | M | 2.01 | 2.04 | 4.71 | 4.55 | 2.33 | | - | SD | 1.70 | 1.67 | 2.73 | 2.83 | 2.03 | | Occupational level | N | 1518 | 1510 | 217 | 185 | 3430 | | of father | M | 4.13 | 4.14 | 5.93 | 6.02 | 4.35 | | | SD | 1.57 | 1.53 | 1.15 | 1.21 | 1.62 | | SES level | N | 1533 | 1524 | 219 | 182 | 3458 | | | M | 3.23 | 3.23 | 4.48 | 4.52 | 3.38 | | | SD | 1.15 | 1.13 | 0.74 | 0.74 | 1.18 | Table 2 Marital Status of Parents of Race-by-Sex and Combined Samples | | Natural Parents
Married | | Natural Separated, Deceased, o | Divorced, | |------------------|----------------------------|-------|--------------------------------|-----------| | | N | % | N | % | | White Males | | | | | | (N=1565) | 1410 | 90.10 | 155 | 9.90 | | White Females | | | | | | (N=1545) | 1359 | 87.96 | 186 | 12.04 | | Negro Males | | | | | | (N=226) | 186 | 82.30 | 40 | 17.70 | | Negro Females | | | | | | (N=191) | 157 | 82.20 | 34 | 17.80 | | Combined Samples | | | | | | (N=3527) | 3112 | 88.23 | 415 | 11.77 | Table 3 Elementary School Progression for Race-by-Sex and Combined Samples | | Regular | Progression | Retained-in-Grad | | | |------------------|---------|-------------|------------------|-------|--| | | N | % | N | %% | | | White Males | | | | | | | (N=1511) | 1361 | 90.07 | 150 | 9.93 | | | White Females | | | | | | | (N=1502) | 1428 | 95.07 | 74 | 4.93 | | | Negro Males | | | • | | | | (N=224) | 140 | 62.50 | 84 | 37.50 | | | Negro Females | | | | | | | (N=191) | 136 | 71.20 | 55 | 28.80 | | | Combined Samples | | | | | | | (N=3428) | 3065 | 89.41 | 19^{363} | 10.59 | | In Table 3, the elementary school progression of the samples is presented. Comparisons between race samples revealed that the Negro students were retained-in-grade significantly more often than white students (p < .001). White males were retained significantly more than white females (p < .001). Negro males were retained more than Negro females; however, this difference was not statistically significant. The mean performance of the samples on the 3rd grade standardized tests are given in Table 4. On the 3rd CTMM IQ score, there were significant differences between race samples and no significant differences between sex samples within race. The difference in mean 3rd CAT Reading score was also significant across race. Within both races, female samples had a higher mean reading level than the male samples; this difference was significant between white males and white females (p < .001), but not significant between Negro males and Negro females. As anticipated from previous analyses, the Negro and white samples differed significantly on all variables. These differences indicated that the Negro samples largely came from lower socio-economic background and had a lower test performance level than the white samples. Therefore, in the analysis of reading achievement, the focus of comparison across race did not concern level of performance, but was directed at determining whether the relationship of reading achievement to other characteristics was the same or different in the two race groups. Table 4 Mean Performance on 3rd Grade Standardized Tests for Race, Sex, and Combined Samples | Variables | | White
Males | White
Females | Negro
Males | Negro
Females | Combined
Samples | |-------------------|------------|----------------|------------------|----------------|------------------|---------------------| | 3rd CTMM IQ score | N . | 1075 | 1023 | 143 | 125 | 2366 | | • | M | 108.63 | 108.50 | 93.70 | 92.40 | 106.81 | | | SD | 16.25 | 15.54 | 15.37 | 16.25 | 16.63 | | 3rd CAT total | N | 1029 | 965 | 138 | 109 | 2241 | | reading score | M | 3.75 | 4.09 | 3.15 | 3.44 | 3.85 | | | SD | .95 | . 84 | .83 | .85 | . 93 | With two exceptions, males and females did not differ significantly on characteristics under investigation, and the exceptions were in agreement with established sex differences (higher reading level for females, higher retention rate for males). The comparability of the sex samples makes it possible to look for replication of relationships to reading achievement in two samples and to evaluate sex-related differences by their replication across race. ## Relationship of Educational Level of Parents to Reading Achievement The comparisons across the three achievement groups on educational level of father are presented in Table 5. In the combined samples the difference in mean educational level was statistically significant (p < .001), with underachievers having fathers with lower educational levels than fathers of average or overachievers. The omega² statistic indicated that educational level of father accounted for 0.9% of the variance among achievement groups. With the stratification of the sample into high and low SES level, a significant difference in educational level of the father was not expected because this measure was a component of the SES classification. In the high SES group, however, the difference among achievement groups remained significant (p < .05). Underachievers from high SES levels had fathers with lower educational level than did high SES average achievers and overachievers. This significant difference most likely resulted from the limited number of
categories on this variable. The upper category included any Þ | Group | · | Under-
achievers | Average
achievers | Cver-
achievers | F | omega ² | |--|----|---------------------|----------------------|--------------------|--------------------|--------------------| | Combined samples | N | 508 | 2421 | 549 | | | | | M | 4.09 | 3.84 | 3.46 | 17.28° | 0.93 | | | SD | 1.67 | 1.75 | 1.84 | | | | High SES | N | 192 | 992 | 292 | <u>.</u> | | | | M | 2.71 | 2.44 | 2.31 | 3.67 ^a | 0.36 | | | SD | 1.62 | 1.62 | 1.59 | | | | Low SES | N | 310 | 138 | 250 | | | | | M | 4.92 | 4.82 | 4.81 | 1.27 | 0.03 | | | SD | 1.32 | 1.02 | 1.04 | | | | High IQ | N | 307 | 1432 | 326 | C | | | | M | 3.76 | 3.38 | 3.05 | 12.63 ^c | 1.11 | | | SD | 1.74 | 1.77 | 1.84 | | | | Low IQ | N | 201 | 989 | 223 | _ | | | | M | 4.60 | 4.51 | 4.08 | 8.42 ^c | 1.04 | | ······································ | SD | 1.43 | 1.50 | 1.67 | | | | White males | N | 235 | 1056 | 256 | 4. | | | | M | 3.88 | 3.59 | 3.41 | 4.62 ^b | 0.47 | | | SD | 1.68 | 1.75 | 1.76 | | | | White females | N | 231 | 1068 | 235 | _ | | | | M | 4.05 | 3.68 | 3.14 | 16.63 ^c | 2.00 | | | SD | 1.65 | 1.71 | 1.84 | | | | Negro males | N | 23 | 158 | 32 | | | | • | M | 5.56 | 5.30 | 5.22 | .67 | 0.00 | | | SD | 0.84 | 1.18 | 1.21 | | • | | Negro females | N | 19 | 139 | 26 | | | | • | M | 5.32 | 5.27 | 4.73 | 2.22 | 1.30 | | | SD | 1.34 | 1.12 | 1.66 | | | ^ap < .05 ^bp < .01 $^{^{}c}p < .001$ educational training beyond high school, ranging from additional vocational or business training to graduate and advanced professional degrees. The significant difference among high SES achievement groups suggested (1) that a more differentiating scale of educational level would reveal a greater association to reading achievement, and (2) that in the highest educational levels the fewest under chievers would be found. When the combined samples were stratified into high and low IQ levels, the relationship of educational level of father to under-, average, and overachievement in reading was found to be significant at both levels. The direction of the difference among groups was the same as that for the total sample, and the percentage of variance accounted for was approximately the same. In the race-by-sex samples, educational level of father was significantly related to reading achievement in the white samples. The omega² statistic and the significance levels also indicated that the relationship was greater for white females than for white males. Although differences were not statistically significant in the two Negro samples, the trend was in the same direction as in the white samples, with underachievers showing the lowest mean level. The association was also relatively greater for Negro females than for Negro males. The educational level of father in high and low IQ levels within separate race-by-sex samples indicated that there was also an interaction effect of sex and IQ level in the relationship of educational level and reading achievement. In the high IQ level, achievement groups differed significantly in educational level of father in the white female sample (p $\langle .001; \text{ omega}^2 = 2.26 \rangle$ and the Negro female sample (p<.001; omega² = 8.93), but these were not significantly different in the white male and Negro male samples. In the low IQ level, the relationship of educational level of father was significant for white males (p < .05; omega² = 0.72) and for white females (p<.001; omega² = 1.87) but not for Negro males or Negro females. Thus, the relationship of educational level to reading achievement among white males appeared to hold predominantly in the low IQ range. The relationship among white females, although significant in both high and low IQ levels, was greater in the high IQ range. The relationship of father's educational level in the Negro female sample, which was not sufficient to produce a significant difference across achievement groups among all Negro females, did show a significant relationship among high IQ Negro females, thereby increasing the evidence for a stronger association of educational level of father to reading achievement among high IQ females. The mean educational levels of mother for the three achievement groups in the various groupings are presented in Table 6. The relationship of educational level of mother to reading ⁶High IQ level for Negro females was defined as a 6th CTMM IQ score of 86 or above; high IQ level for white females was defined as an IQ score of 100 or above, see Procedures section. | Group | | Under-
achievers | Average
achievers | Over-
achievers | F | omega ² | |------------------|----|---------------------|----------------------|--------------------|-------------------|--------------------| | Combined samples | N | 512 | 2427 | 551 | | | | | M | 3.98 | 3.84 | 3.67 | 5.45 ^b | 0.25 | | | SD | 1.49 | 1.59 | 1.55 | | | | High SES | N | 192 | 995 | 292 | _ | | | | M | 3.30 | 2.96 | 2.97 | 3.83 ^a | 0.38 | | | SD | 1.53 | 1.60 | 1.55 | | | | Low SES | N | 312 | 1375 | 251 | | | | | M | 4.39 | 4.44 | 4.47 | 0.27 | 0.08 | | | SD | 1.28 | 1.26 | 1.10 | | | | High IQ | N | 306 | 1441 | 327 | | | | _ | M | 3.66 | 3.47 | 3.33 | 3.57 ^a | 0.25 | | | SD | 1.45 | 1.58 | 1.57 | | | | Low IQ | N | 206 | 986 | 224 | | | | | M | 4.46 | 4.37 | 4.15 | 2.77 | 0.25 | | | SD | 1.42 | 1.45 | 1.38 | | <u>.</u> | | White males | N | 234 | 1060 | 255 | | | | | M | 3.83 | 3.64 | 3.56 | 1.96 | 0.12 | | | SD | 1.48 | 1.58 | 1.48 | | | | White females | N | 231 | 1073 | 2 36 | h | | | | M | 3.93 | 3.71 | 3.47 | 5.27 ^b | 0.55 | | | SD | 1.48 | 1.55 | 1.52 | | | | Negro males | N | 26 | 157 | 34 | | | | | M | 5.08 | 5.08 | 5.03 | . 67 | 0.00 | | | SD | 1.02 | 1.22 | 1.22 | | • | | Negro females | N | 21 | 137 | 26 | | | | | M | 4.90 | 4.95 | 4.65 | .52 | 0.00 | | | SD | 1.34 | 1.29 | 1.65 | | | ^ap < .05 ^bp < .01 achievement showed the same pattern as educational level of father in all samples and stratifications, but the relationship was not as strong. In the combined groups, educational level of mother accounted for 0.3% of the variance across the achievement groups compared to 0.9% for educational level of father. The difference between the groups did not reach significance in the white male sample, and the significant level of the difference in the white female sample was lower. Comparing other figures in Table 6 with those in Table 5, it can be seen that the relationship of educational level of mother in the high and low SES levels was approximately the same as that for educational level of father. In the high and low IQ levels, the difference among achievement groups in educational level of mother did not reach significance in the low IQ level, and the difference was at a lower significance level in the high IQ level than that for educational level of father. Examination of the differences in educational level of mother across stratifications in the individual samples showed the same relationships that were found for educational level of father. A significantly lower mean of underachievers in the high SES level resulted solely from the significant difference in the white female sample. In the high IQ level, underachievers showed a significantly lower educational level of mother only in the female samples (p < .05 for white females; p < .001 for Negro females). The results indicated that the relationship of educational level of parents to achievement in reading was primarily characteristic of females. This finding was replicated on two measures, one for father and one for mother, and across race groups. Further, the relationship resulted primarily from differences in the high IQ level. If IQ and educational level of parents are considered as determiners of reading achievement, the results showed that females with a high IQ profit more from the higher educational background in the home than do males. For males, the results suggest the reverse, for it was only in the low IQ range that educational level of father was significantly related to reading achievement (white male sample, p <.05). # Relationship of Occupational Level of Father to Reading Achievement In the combined samples, occupational level of father was significantly different across the three achievement groups, with underachievers coming from the lowest mean occupational level (Table 7). The variance accounted for among groups by occupational level (0.8%) was similar to that accounted for by educational level of father (0.9%). At high and low SES levels, the occupational level of father was not significantly different across achievement groups (this variable was a component in the SES classification). There was a significant difference in both high and low IQ levels, with a higher significance level and slightly greater percentage of variance accounted for in the upper IQ range than in the lower IQ Table 7 Mean Occupational Level of Father of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | Group | <u>.</u> | Under-
achievers | Average achievers | Over-
achievers | F | omega ² | |------------------|----------|---------------------|-------------------|--------------------|--------------------|--------------------| | Combined samples | N | 5 01 | 2383 | 546 | c | | | • | M | 4.54 | 4.39 | 4.03 | 14.98 | 0.81 | | | SD | 1.48 | 1.62 | 1.70 | | | | ligh SES | N | 188 | 981 | 289 | | | | • | M | 3.04 | 2.87 | 2.78 | 2.46 | 0.20 | | | SD | 1.14 | 1.23 | 1.24 | | | | Low SES | N | 308 | 1377 | 253 | | | | | M | 5.43 | 5.44 | 5.41 | 0.16 | 0.00 | | | SD | 0.72 | 0.75 | 0.83 | | | | High IQ | N | 300 | 1417 | 324 | • | | | | M | 4.23 | 4.00 | 3.62 | 11.43 ^c | 1.01 | | | SD | 1.52 | 1.65 | 1.70 | | | | Low IQ | N | 201 | 966 | 222 | ъ | | | • | M | 5.00 | 4.94 | 4.62 | 5.41 | 0.63 | | | SD | 1.28 | 1.40 | 1.53 | | | | hite males | N |
226 | 1040 | 252 | _ | | | | M | 4.29 | 4.16 | 3.90 | 4.04 ^a | 0.40 | | | SD | 1.45 | 1.57 | 1.64 | | | | White females | N | 229 | 1048 | 233 | c | | | | M | 4.49 | 4.16 | 3.71 | 15.47 ^c | 1.88 | | | SD | 1.42 | 1.51 | 1.61 | | | | Negro males | N | 25 | 158 | 34 | | | | • | M | 5.72 | 5.98 | 5.88 | 0.56 | 0.00 | | | SD | 0.84 | 1.17 | 1.27 | | | | legro females | N | 21 | 137 | 27 | | | | • | M | 6.38 | 6.04 | 5.59 | 2.67 | 1.78 | | | SD | 0.97 | 1.22 | 1.28 | | | **a**p∠.05 ^bp < .01 ^cp < .001 range. As in the relationships of educational level to reading achievement, significant relationships resulted from differences in the two white samples, and primarily in the white female sample. For white females, the occupational level of father accounted for 1.9% of the variance across achievement groups compared to 0.4% in the white male sample. Although the association was not significant in either of the Negro samples, there was a stronger relationship of occupational level to achievement among Negro females than among Negro males. In the high and low IQ level stratification in the individual samples, the same interaction occurred between IQ level and sex that was found with the measures of educational level. There was not a significant difference among achievement groups in mean occupational level of father in the male samples in the high IQ range, whereas the relationship was significant in both female samples (p<.001; omega² = 2.27%, for white females and p<.01; omega² = 5.59% for Negro females). In the low IQ range, differences were only significant in the white male (p<.05; omega² = 0.68%) and white female (p<.05; omega² = 1.08%) samples. Relationship of SES Level to Reading Achievement Differences across achievement groups in SES level paralleled those found for educational and occupational level of father, the two components of this measure. Underachievers had a lower mean SES level than average and overachievers in all comparisons shown in Table 8, with the exception of the low IQ level and Negro male sample. As with educational level of father, the difference among achievement groups remained significant in the high SES stratification, and differences were significant in both high and low IQ stratifications. As with educational and occupational levels of father, significant relationships of SES level to reading achievement resulted primarily from the differences in the female samples. The significant difference of achievement groups in the high SES level resulted solely from the difference in the white female sample (p < .05; omega 2 = 0.88%). In the high IQ range, differences were not significant among achievement groups in the two male samples, but were highly significant in the two female samples (p < .001). A methodological question relevant to the prediction and description of reading achievement concerns the usefulness of the weighted SES score as opposed to the prediction produced by the separate components of this composite score. With one exception, the significance level and percentage of variance figures in Table 8 (SES level) did not differ appreciably from the figures in Table 5 (Educational Level of Father) and Table 7 (Occupational Level of Father). This suggested that either the educational or occupational measure could be used to account for the differences across reading achievement groups in place of the more complexly-derived SES measure. The one exception where prediction was better with the Table 8 Mean SES Level of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | Group | | Under-
achievers | Average
achievers | Over-
achievers | F | omega ² | |------------------|-----|---------------------|----------------------|--------------------|--------------------|--------------------| | Combined samples | N | 508 | 2402 | 548 | | | | | M | 3.54 | 3.40 | 3.13 | 17.55 ^c | 0.95 | | | SD | 1.08 | 1.17 | 1.25 | 27.55 | | | High SES | N | 193 | 1001 | 293 | | | | _ | M | 2.39 | 2.24 | 2.17 | 3.96 ^a | 0.40 | | | SD | 0.80 | 0.86 | 0.88 | | | | Low SES | N | 315 | 1401 | 235 | | | | | M | 4.24 | 4.23 | 4.23 | 0.08 | 0.00 | | | SD | 0.43 | 0.42 | 0.42 | | | | High IQ | N | 305 | 1428 | 324 | _ | | | | M | 3.33 | 3.10 | 2.80 | 15.47 ^c | 1.39 | | | SD | 1.13 | 1.21 | 1.26 | | | | Low IQ | N | 203 , | 974 | 224 | h | | | | M | 3.85 | 3.85 | 3.61 | 5.74 | 0.67 | | | SD | 0.90 | 0.95 | 1.05 | | | | White males | N | 235 | 1046 | 252 | ·· | | | | M | 3.39 | 3.23 | 3.08 | 4.36 ^a | 0.44 | | | SD | 1.10 | 1.15 | 1.21 | • | | | White females | N / | 228 | 1061 | 235 | c | | | | M | 3.48 | 3.26 | 2.88 | 17.88 ^c | 2.17 | | | SD | 1.02 | 1.12 | 1.20 | | | | Negro males | N | 25 | 159 | 35 | 0.45 | 0.00 | | | M | 4.48 | 4.50 | 4.37 | | | | | SD | 0.59 | 0.76 | 0.73 | | | | Negro females | N | 20 | 136 | 26 | • | | | | M | 4.70 | 4.55 | 4.19 | 3.33 ^a | 2.50 | | | SD | 0.57 | 0.69 | 1.02 | | | 32 Note. -- Lower means indicate higher SES level. ^ap < .05 $^{^{}b}$ p < .01 $c_{p} < .001$ SES measure than with either of the educational or occupational components was in the Negro female sample. In this sample, average and overachievers differed in mean educational and occupational level of father, but these differences were not statistically significant. Combining these two measures to obtain an SES level score increased the differences among the achievement groups to a statistically significant level (p < .05). ## Relationship of Other Family Characteristics to Reading Achievement Underachievers, average achievers, and overachievers were compared on number of siblings and marital status of parents. The mean number of siblings for achievement groups is presented in Table 9. There was a significant difference across achievement groups in the combined samples, with underachievers having a higher number of siblings than average or overachievers. A similar relationship, however, was not consistently found in the stratifications of the combined samples and the individual samples. Although there were trends across achievement groups, significant differences were only found in the low IQ level and the white male sample. Where significant differences and trends occurred, means of the achievement groups indicated that the relationship of number of siblings to reading achievement resulted primarily from the fewer siblings of overachievers rather than the greater number for underachievers. The indication that the relationship of number of siblings to reading achievement was primarily Table 9 Mean Number of Siblings of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Ranges, and Separate Race and Sex Samples | Group | | Under-
achievers | Average achievers | Over-
achievers | F | omega ² | |------------------|----|---------------------|-------------------|--------------------|-------------------|--------------------| | Combined samples | N | 536 | 2537 | 578 | | | | | M | 2.35 | 2.37 | 2.12 | 3.64 ^a | 0.14 | | | SD | 1.94 | 2.09 | 1.82 | | | | High SES | N | 193 | 1001 | 293 | | | | | M | 1.87 | 1.85 | 1.78 | 0.34 | 0.00 | | | SD | 1.38 | 1.45 | 1.22 | | | | Low SES | N | 315 | 1401 | 255 | | | | | M | 2.73 | 2.82 | 2.69 | 0.53 | 0.00 | | | SD | 2.08 | 2.31 | 2.23 | | | | High IQ | N | 319 | 1495 | 343 | | | | | M | 1.92 | 1.92 | 1.82 | 0.60 | 0.00 | | | SD | 1.53 | 1.65 | 1.47 | | | | Low IQ | N | 217 | 1042 | 235 | | | | | M | 3.00 | 3.02 | 2.57 | 3.53 ^a | 0.34 | | | SD | 2.27 | 2.45 | 2.18 | | <u>,,</u> | | White males | N | 248 | 1105 | 271 | | | | | M | 2.16 | 2.03 | 1.76 | 3.90 ^a | 0.36 | | | SD | 1.80 | 1.74 | 1.40 | | | | White females | N | 240 | 1116 | 244 | | | | | M | 2.13 | 2.06 | 1.90 | 1.28 | 0.04 | | | SD | 1.63 | 1.74 | 1.37 | | | | Negro males | N | 27 | 168 | 36 | | | | | M | 4.41 | 4.72 | 4.86 | 0.22 | 0.00 | | | SD | 2.69 | 2.72 | 2.88 | | | | Negro females | N | 21 | 148 | 27 | | | | | M | 4.57 | 4.63 | 4.07 | 0.44 | 0.00 | | | SD | 2.77 | 2.83 | 2.93 | | | ^ap < .05 characteristic of low-IQ-level white males was supported by the relationships within the white male sample. The difference in number of siblings was significant (p < .05; omega² = 0.92%) across achievement groups in the low IQ level, but it was not significant across high-IQ white male achievement groups. The trend of means across achievement groups in the Negro male sample was opposite from that in the white samples. Negro male underachievers had the lowest mean number of siblings, and overachievers had the highest mean number of siblings. In the Negro female sample a trend was not clear; both underachievers and overachievers had fewer siblings than average achievers. A closer examination of family size in the Negro samples indicated that fewer underachievers came from small and large families, in contrast to the white samples where the incidence of underachievement consistently increased with increase in family size. In the Negro samples, 22% of underachievers had two or less siblings compared to 24% of average achievers and 28% of overachievers. Considering large families, 18% of underachievers had six or more siblings compared to 42% of average achievers and 44% of overachievers. In contrast, 26% of the white male underachievers had six or more siblings, compared to 5% of average achievers and only 2% of overachievers. Although the distribution of number of siblings across achievement groups was not significant in the Negro samples when tested by chi square, there was definitely a different relationship to reading achievement from that found in the white samples. Large family size was more often associated with average and overachievement than with underachievement. The marital status of the subjects' natural parents was coded into the following categories: married, separated, divorced, deceased, or : emarried. The percentages in each of these categories were tabulated for the achievement
groups. In addition, a dichotomous variable was formed to compare all of the categories that reflected a change in marital status prior to the 6th grade with the "married" category. The percentages of subjects in the three achievement groups whose parents were recorded as being separated, divorced, deceased, or remarried when the subject was in the 6th grade are presented in Table 10. The only significant difference in marital status occurred in the white male sample (p < .05; C = .07). Among white males, a higher percentage of underachievers than average or overachievers had parents whose marriage had been disrupted. Examination of the relationship of marital status to achievement within the white male sample revealed that the significant difference largely resulted from differences in the low SES level (p <.01; C = .11). White male underachievers had a higher percentage than average and overachievers in each of the change categories (separated, divorced, deceased, or remarried); so, there was no indication that one category was more highly related to underachievement than the others. Table 10 Marital Status of Parents of Under-, Average, and Overachievers in Combined Samples, High and Low SES and IQ Levels and Race and Sex Samples | Group | Undera | chievers | | rage
evers | Overac | hievers | x ² | C | |-----------------|--------|----------|-----|---------------|--------|----------|-------------------|-------------| | <u> </u> | N | % | N | % | N | <u>%</u> | · | | | ombined samples | 69 | 13.4 | 281 | 11.4 | 65 | 11.7 | 1.48 | .02 | | igh SES | 19 | 9.9 | 94 | 9.4 | 32 | 10.9 | . 59 | .02 | | ow SES | 44 | 14.0 | 162 | 11.6 | 28 | 11.1 | 1.53 | .03 | | igh IQ (white) | 29 | 10.0 | 107 | 8.1 | 29 | 9.6 | 1.49 | .03 | | igh IQ (Negro) | 4 | 16.7 | 26 | 15.6 | 8 | 25.0 | 2.30 | .10 | | ow IQ (white) | 31 | 17.2 | 118 | 14.2 | 27 | 14.0 | 1.16 | .03 | | ow IQ (Negro) | 5 | 20.8 | 30 | 21.3 | 1 | 3.4 | 5.15 | .16 | | hite males | 34 | 14.3 | 92 | 8.6 | 29 | 11.2 | 7.80 ^a | .07 | | hite females | 26 | 11.2 | 133 | 12.4 | 27 | 11.4 | . 35 | .01 | | egro males | 4 | 14.8 | 32 | 19.5 | 4 | 11.4 | 1.47 | .08 | | egro females | 5 | 23.8 | 24 | 16.7 | 5 | 19.2 | . 68 | .06 | Note.-Figures represent the number and percentage of subjects in each group whose parents had been separated, divorced, deceased, or remarried at the time the subject was in the 6th grade. The break points for defining high and low IQ levels were an IQ score of 100 in the white samples and an IQ score of 85 in the Negro samples. ^ap **∠** .05 #### Elementary School Progression The percentages of subjects in the achievement groups who were retained in grade between grades 1 and 6 are presented in Table 11. Underachievers were retained slightly more than average achievers in all samples and in the combined samples. The difference among the three achievement groups, however, was only significant in the Negro female sample (p < .05). Further, the difference in the percentage of Negro females retained was only significant in the low SES range (p < .02, C = .22) and low IQ range (IQ below 85, p < .05, C = .28). With the exception of the findings in the Negro female sample, retention in elementary school did not appear to be related to underachievement in reading when general level of mental ability was controlled. Comparison of the figures in all achievement groups across high and low IQ and SES ranges, however, showed that elementary school retention was highly related to IQ score and SES level. The over-all retention rate for students in the white samples with IQ scores above 100 was approximately 2% compared to the retention rate of 17% for students with IQ scores below 100. This strong relationship of retention to ability or general achievement suggests that decisions to retain a student were primarily based on normative level of performance and not on discrepancy between performance and ability, i.e., achievement Table 11 Percentage of Under-, Average, and Overachievers Retained in Elementary School in Combined Samples, High and Low SES and IQ Levels and Race and Sex Samples | Group | Undera | chievers | | rage
evers | Overac | hievers | x ² | С | |-----------------|--------|----------|-----|---------------|--------|---------|-------------------|-----| | | N | % | N | % | N | % | | | | ombined samples | 61 | 12.1 | 251 | 10.5 | 51 | 9.5 | 1.88 | .02 | | igh SES | 12 | 6.4 | 48 | 4.9 | 10 | 3.6 | 2.01 | .04 | | ow SES | 47 | 15.3 | 187 | 13.8 | 41 | 16.5 | 1.52 | .03 | | igh IQ (white) | 8 | 2.8 | 22 | 1.7 | 7 | 2.4 | 1.74 | .03 | | igh IQ (Negro) | 8
7 | 29.2 | 25 | 15.2 | 5 | 16.7 | 2.93 | .11 | | ow IQ (white) | 31 | 17.7 | 135 | 17.0 | 21 | 11.4 | 3.88 | .06 | | ow IQ (Negro) | 15 | 62.5 | 69 | 48.6 | 18 | 60.0 | 2.49 | .11 | | hite males | 24 | 10.5 | 104 | 10.1 | 22 | 8.8 | .49 | .02 | | hite females | 15 | 6.6 | 53 | 5.1 | 6 | 2.6 | 3.90 | .05 | | egro males | 11 | 40.7 | 58 | 35.8 | 15 | 42.8 | .75 | .06 | | egro females | 11 | 52.4 | 36 | 24.8 | 8 | 32.0 | 6.94 ^a | .19 | Note.-The breakpoint for defining ligh and low IQ ranges in the white samples was an IQ score of 100; the breakpoint in the Negro samples was an IQ score of 85. a p < .05 as defined in this study. 7 ### Relationship of 3rd Grade Test Performance to Reading Achievement For the subjects who were in the 3rd grade, two test scores were available, the 3rd grade CTMM IQ score and the 3rd grade CAT Reading score. Achievement groups differed significantly in 3rd grade CTMM IQ in the high and low SES levels, high IQ level, and in the white male and white female samples, with underachievers having the lowest mean IQ (Table 12). Underachievers also had a lower mean IQ score than average achievers; in the low IQ level and in the Negro male and Negro female samples, however, differences were not statistically significant. The largest differences occurred among white males and white females in the high IQ level. Significant differences in mean 3rd grade IQ of the achievement groups supported other evidence (Part I) of some misclassification of subjects due to the reliability of the 6th grade test scores. Where significant differences in 3rd grade CTMM IQ score occurred, however, the percentage of variance accounted for across achievement groups was In some of the comparisons presented in Table 11, the percentage of retention among overachievers was higher than that for average achievers. The method of defining achievement groups may have contributed to this finding. Expected reading level was based on the IQ score, which included chronological age. As previously discussed (see Discussion section of Part I), students who have been retained may have lower IQ scores in grades following the retention by virtue of increased age alone. This, in turn, would increase the probability of retained students being classified as overachievers. Table 12 Mean 3rd Grade CTMM IQ Score of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Levels and Race and Sex Samples | Group | · · · · · · · · · · · · · · · · · · · | Under-
achievers | Average
achievers | Over-
achievers | F | omega ² | |------------------|---------------------------------------|---------------------|----------------------|--------------------|--------------------|--------------------| | Combined samples | N | 333 | 1680 | 353 | c | | | | M | 103.84 | 106.70 | 110.15 | 12.61 ^c | 0.97 | | | SD | 16.60 | 16.47 | 16.87 | • | | | High SES | N | 120 | 671 | 170 | | | | | M | 109.32 | 112.74 | 114.07 | 3.67 ^a | 0.55 | | | SD | 14.90 | 15.11 | 15.13 | | | | Low SES | N | 203 | 975 | 174 | а | | | | M | 101.50 | 102.79 | 105.91 | 3.69 | 0.40 | | | SD | 16.55 | 16.11 | 17.47 | | | | High IQ | N | 195 | 1000 | 224 | _ | | | | M | 110.77 | 113.72 | 117.21 | 12.07 ^c | 1.54 | | | SD | 13.67 | 13.56 | 13.03 | | | | Low IQ | N | 138 | 680 | 129 | | | | · | M | 94.04 | 96.38 | 97.89 | 2.28 | 0.27 | | | SD | 15.42 | 14.85 | 15.75 | | | | White males | N | 158 | 744 | 173 | ъ | | | | M | 105.39 | 108.70 | 111.30 | 5.51 | 0.83 | | | SD | 15.64 | 16.31 | 16.11 | | | | White females | N | 147 | 733 | 143 | c | | | | M | 105.54 | 108.27 | 112.70 | 8.08 ^c | 1.37 | | | SD | 15.77 | 15.28 | 15.87 | | | | Negro males | N | 15 | 105 | 23 | | | | _ | M | 86.20 | 95.01 | 92.61 | 2.26 | 1.74 | | | SD | 16.97 | 15.17 | 14.36 | | | | Negro females | N | 13 | 98 | 14 | | | | _ | M | 86.08 | 92.32 | 98.86 | 2.13 | 1.77 | | | SD | 16.23 | 15.48 | 20.08 | | | ^ap∠.05 bp<.01 small, exceeding 1% only in the white female sample and in the high IQ level. Comparison of the 6th grade underachievers, average achievers, and overachievers on 3rd grade reading performance was directed at determining whether underachievers in the 6th grade revealed a history of underachievement back to the primary grades, or whether development of reading skills in the 4th and 5th grades was more critical to achievement status in the 6th grade. Comparisons of the three achievement groups on the 3rd grade CAT Reading score are presented in Table 13. With the exception of the Negro male sample, the mean 3rd grade reading level of underachievers was significantly below that of average and overachievers in all samples and stratifications (p < .001). In the Negro male sample, the trend of means was in the same direction as in other samples, and the difference across achievement groups approached significance. The percentage of variance accounted for across the achievement groups by the 3rd grade CAT Reading score was much greater than that accounted for by the 3rd CTMM IQ score, indicating that differences in IQ could not account for all differences in reading level. The lower 3rd grade reading level of the 6th grade underachievers supported the hypothesis that many underachievers had a history of underachievement in relation to the level expected from their mental ability score at least as far back as the 3rd
grade. Table 13 Mean Performance on the 3rd Grade CAT Reading Subtest of Under-, Average, and Overachievers in the Combined Samples, High and Low SES and IQ Levels and Race and Sex Samples | Group | | Under-
achievers | Average achievers | Over-
achievers | F | omega ² | |------------------|----|---------------------|-------------------|--------------------|--------------------|--------------------| | Combined samples | N | 333 | 1588 | 320 | | | | | M | 3.37 | 3.86 | 4.27 | 83.20 ^a | 6.83 | | | SD | .93 | .90 | .85 | | | | High SES | N | 119 | 649 | 163 | 47.25 ^a | 9.04 | | J | M | 3.54 | 4.12 | 4.52 | | | | | SD | • 94 | .83 | .74 | | | | Low SES | N | 206 | 908 | 153 | | | | | M | 3.31 | 3.69 | 4.02 | 28.86 ^a | 4.21 | | | SD | .91 | .88 | .87 | | | | High IQ | N | 190 | 961 | 201 | | | | | M | 3.80 | 4.28 | 4.67 | 74.29 ^a | 9.78 | | | SD | .83 | .71 | .57 | | | | Low IQ | N | 143 | 627 | 119 | | | | | M | 2.81 | 3.21 | 3.60 | 35.45 ^a | 7.19 | | | SD | .74 | .76 | .81 | | | | White males | N | 154 | 714 | 161 | • | | | | M | 3.23 | 3.76 | 4.18 | 43.90 ^a | 7.70 | | | SD | .92 | .91 | .87 | | | | White females | N | 142 | 694 | 129 | | | | | M | 3.66 | 4.10 | 4.53 | 39.02 ^a | 7.30 | | | SD | .89 | .81 | .73 | | | | Negro males | N | 18 | 99 | 21 | | | | - | M | 2.83 | 3.14 | 3.46 | 2.84 | 2.59 | | | SD | .79 | .84 | .76 | | | | Negro females | N | 19 | 81 | 9 | - | | | - | M | 2.94 | 3.48 | 4.19 | 7.70 ^a | 10.94 | | | SD | .77 | .82 | .68 | | | ap<.001 There were other characteristics in the reading performance of the study sample that need to be considered in order to evaluate the performance of the achievement groups from grades 3 to 6. First, it was noted that the mean reading level of subjects with 3rd grade reading scores was .4 grade equivalents above normative placement in the 3rd grade (Table 4); whereas, the mean 6th grade CAT Reading score for all subjects in the study was .3 grade equivalents below the 6th grade norm. The higher 3rd grade reading level of subjects with 3rd grade scores can also be seen in Table 13, where the mean reading score of underachievers (combined samples) was at grade placement (3.4). By comparing the 6th grade performance of the subgroup of subjects with 3rd grade scores with that of the complete sample, it was possible to determine whether the smaller group was representative of the complete sample or whether it was a select, higher-performing group. Data for these comparisons is presented in Table 14. The 3rd grade samples had only slightly higher 6th grade reading and IQ scores than the complete 6th grade sample, and none of the differences on the 6th CAT Reading score was statistically significant. Thus, the decrease in reading level relative to the norm grade placement did not appear to result from selection of subjects. Differences in tests could also be ruled out as a cause of the decrease, since they were from the same publisher, and the norms were as comparable as can be obtained across grades. This would Table 14 Mean 6th Grade CAT Reading Score and Mean 6th Grade CTMM IQ Score for Subjects with 3rd Grade CAT Reading Scores (Figures in parentheses are for the complete 6th grade sample) | | | 6th CAT Re | eading Score | 6th CTM | IQ Score | |------------------|----|------------|--------------|---------|----------| | Combined Samples | M | 5.88 | (5.83) | 103.45 | (101.96) | | | SD | 1.50 | (1.51) | 16.52 | (17.13) | | White Males | M | 5.80 | (5.76) | 103.85 | (103.26) | | | SD | 1.51 | (1.55) | 16.15 | (16.76) | | White Females | M | 6.21 | (6.21) | 105.97 | (105.62) | | | SD | 1.37 | (1.38) | 15.09 | (15.14) | | Negro Males | M | 4.49 | (4.42) | 87.83 | (85.42) | | | SD | 1.26 | (1.13) | 15.63 | (15.66) | | Negro Females | M | 4.74 | (4.92) | 88.30 | (87.58) | | | SD | 1.24 | (1.16) | 15.09 | (15.87) | suggest that the cause of the general drop in reading level from grades 3 to 6 was related to characteristics of the reading curriculum in the schools in the intervening grades between tests.8 The findings developed this far would indicate (1) that underachievers were performing at a significantly lower level than average and overachievers in the 3rd grade, (2) that the subjects with 3rd grade scores were representative of the complete study sample in their performance in the 6th grade, and (3) that there was a general drop in reading level relative to grade placement from grades 3 to 6. In light of these findings, there were interesting differences in the performance of underachievers, average achievers, and overachievers from grades 3 to 6. In Figure 1, the mean score of each achievement group in the combined sample is expressed in terms of the deviation in grade-equivalent units from the norm grade-placement for the 3rd and 6th grade testings. In Figure 2, comparable data for the race-by-sex samples is depicted. In the combined samples, overachievers, whose mean reading level in the 3rd grade was .9 grade equivalents above norm placement, were also reading .9 grade equivalents above grade placement in the 6th grade. In contrast, the mean performance of Cross-sectional data from the County testing program in the years that the study subjects were in grades 6 to 8 show the same effect as the cohort data above. That is, the 3rd grade classes during these three years had a mean reading level that was at or above norm placement; whereas, 5th and 6th grade classes had mean reading scores that were .2 or .3 grade equivalents below the norm. FIGURE 1 MEAN 3rd AND 6th GRADE READING LEVELS OF UNDER-, AVERAGE, AND OVERACHIEVERS CORRECTED FOR GRADE LEVEL (ALL SUBJECTS WITH BOTH SCORES, N=2241) MEAN 3rd AND 6th GRADE READING LEVEL OF UNDER-, AVERAGE, CORRECTED FOR GRADE LEVEL (RACE AND SEX SAMPLES) FIGURE 2 AND OVERACHIEVERS DEVIATION FROM NORM GRADE PLACEMENT 47 average achievers dropped from .5 grade equivalents above the norm in the 3rd grade to .3 grade equivalents below the norm in the 6th grade. The drop of underachievers was even greater, from a mean performance at grade placement in grade 3 to 1.3 grade equivalents below the norm in grade 6. This same pattern of change occurred in all four race-by-sex samples. Thus, whatever weaknesses in the reading curriculum, or other factors that may have resulted in the general drop relative to norm placement, the performance of overachievers was unaffected. Further, the effect on underachievers in reading was greater than the effect on average achievers. A test of the significance of the difference in change of the achievement groups was performed with an analysis of variance with covariate control. Results of this analysis with the white male and white female samples are given in Table 15. Differences among achievement groups in 6th grade reading level remained highly significant (1) when groups were equated on 3rd grade reading level and (2) when equated on 3rd grade reading and IQ level. There were also some additional characteristics of note in pattern of reading achievement from grades 3 to 6 in each of the race-by-sex samples. The general fanning out of the lines that indicate change from 3rd to 6th grade (Figure 2) suggest that drop in mean performance was partly related to the initial level of reading in the 3rd grade. Negro male underachievers who had the lowest mean in the 3rd grade, relative to normative placement, Table 15 Differences in Mean 6th Grade Reading Level of Achievement Groups Controlled for Differences in 3rd Grade Reading Level and 3rd Grade IQ Score | | Under-
achievers | Average
achievers | Over-
achievers | fæ4 | 2
omega | |--|---------------------|----------------------|--------------------|--|----------------| | | | WH | WHITE MALES | | | | Unadjusted 6th CAT Reading
Adjusted for 3rd CAT Reading | 4.42
5.00 | 5.81 | 7.04 | 145.78 ^a
104.33 ^a | 21.96 | | Adjusted for 3rd CAT Reading and 3rd CTMM IQ | 4.98 | 5.81 | 6.61 | 128.39 ^a | 21.18 | | | | WHITE | FEMALES | | | | Unadjusted 6th CAT Reading
Adjusted for 3rd CAT Reading | 4.93
5.38 | 6.18
6.17 | 7.58 | 166.95 ^a
132.10 ^a | 25.59
21.38 | | Adjusted for 3rd CAT Reading
and 3rd CIMM IQ | 5.39 | 6.18 | 7.18 | 149.08ª | 24.88 | Note. -- Adjusted means indicate what the 6th grade reading level would have been if groups had been equal in mean 3rd grade performance. a p < .001 > showed the greatest decrease in performance from grades 3 to 6. White female overachievers, who had the highest level of performance in the 3rd grade, showed a slight increase in mean performance in the 6th grade. The similarity in the mean change of Negro male and Negro female average achievers to that of white male and white female underachievers further supports that decrease in performance was related to initial reading level. The exceptions to this general pattern suggest that in addition to the relationship of initial standing to decrease in performance, the status of being an overachiever had a relationship to change between the two grades. Male overachievers (both races) did not decrease in reading level as much as same-race female average achievers, although these groups had similar 3rd grade reading scores. The same relationship between overachievement and change can be seen in the performance of high and low IQ groups. Low IQ overachievers did not show as great a decrease in performance as high IQ underachievers, although the latter had a higher mean 3rd grade reading score. #### Discussion Family Characteristics. Educational and occupational background of parents was found to be related to relative reading achievement; however, over-all, this relationship was quite small. The percentage of variance accounted for across achievement groups by socio-economic measures was only 1%. Since the method that was used to calculate relative achievement could very well control out much of the variance that is common to
family background and intelligence, we can conclude that the educational and occupational levels of a child's parents do have some influence on level of reading achievement that is independent of his general mental ability. This relationship of socio-economic background to reading achievement primarily reflected differences between the upper educational and occupational levels. Of the children in SES Level I (parents with college or college graduate education and executive, proprietor, and professional occupations), only 9% were underachievers. Among children in SES Level II (parents with high school or college education and administratives, small business owners, minor and semi-professional occupations), 13% were underachievers. In the lower three SES levels, percentages of underachievers were very similar, between 15% and 16%. Therefore, only in the most highly educated groups does there seem to be a significant decrease in the number of underachievers. Data bearing on the question as to whether background has more influence on achievement of the upper or lower ability child lead to different conclusions than those reached by Curry (1962), who found that the effect of socio-economic conditions on scholastic achievement was greater among lower mental ability groups. Our results would indicate that the effect of educational and occupational background on relative reading achievement is of similar magnitude in both high and low ability groups. In fact, the relationship was slightly stronger in the high IQ group, and particularly stronger for high IQ girls. The most interesting findings concerned the differences in the relationship of socio-economic and other family characteristics to reading achievement when sex and mental ability were both taken into account. For girls, family background and intelligence seemed to have an additive effect on reading status. It was among bright girls that the educational background of the parents had the greatest contribution to producing average and overacnievers rather than underachievers. Among high IQ boys, the relative achievement in reading did not appear to be significantly affected by parents' educational level. Among boys, on the other hand, the effect of family characteristics and intelligence on reading appeared to be a compensative relationship. It was among the low mental ability boys that parents' educational There are several similarities between Curry's study and the present one. In both studies the subjects were 6th graders, the California Achievement and Mental Ability Tests were used, and groups were compared across IQ and SES levels. The major difference in the studies is that Curry investigated relationships to normative level of achievement, whereas, our subjects were classified according to achievement relative to potential or expected achievement. level had positive relationship to reading achievement. Also, having fewer siblings and an intact home, which are situations where a child is likely to receive a greater amount of attention from parents, were also related to reading status of boys in the low IQ group. It can only be conjectured what factors lie behind the differences for boys and girls in the relationship of family background to reading achievement. A plausible hypothesis, however, is that these differences are associated with the earlier development in girls of reading skills and verbal skills in general. For girls, and particularly bright girls, reading and pre-reading activities occur prior to school age more often than for boys. At this time, parents have a greater influence on a child than when the child is in school, if only from the standpoint of the greater amount of time spent with the child. Even among bright boys, the readiness for or interest in conceptualizing the world in terms of language and reading may not come until late in the 1st or into the 2nd grade, after the school has assumed the primary role in teaching reading. Therefore, girls from homes where there is a greater interest and participation in reading activities may be in a better position than boys to profit from their parents' background in developing reading skills. Race Differences. Differences between race were difficult to assess for two reasons. On the educational and occupational measures, the Negro samples had a much more homogeneous distribution than the white samples, which could prevent the finding of significant differences. Second, other family characteristics, number of siblings and marital status of parents, were not strongly related to reading achievement in the white samples (the only significant differences were among low IQ level white males). In general, then, the relationships among the Negro samples were similar to those found in the white samples. There was a greater relationship of educational and occupational level to reading achievement for Negro females than for Negro males, especially for females in the high IQ group. This replicated the findings in the white samples. Family size and marital status of parents were not significantly related to reading achievement in either the Negro male or Negro female samples. There was a trend in the Negro samples suggesting that large families produce fewer underachievers than middle-size families, in contrast to the trend in the white samples. However, the number of white subjects with comparably large family size was too few to know whether this was a general relationship or one that was only characteristic of the Negro samples. Retention (Non-promotion) in Elementary School Grades. Data on the relationship of retention in elementary school grades to relative reading achievement do not shed light on the efficacy of retaining students as means to remedy skills. The finding that overachievers were not retained significantly less than average achievers suggests that retention may have benefitted some students. 10 The equal or slightly higher retention rate among underachievers, however, would suggest the opposite, repeating grades did not improve reading status. Perhaps the most significant implication of finding no difference in elementary school retentions for the achievement groups comes in relationship to findings reported in Part II of this report. In those analyses, retention in secondary school grades was found to be significantly higher for underachievers than for average or overachievers. 11 In view of these findings (and recognizing that retention is only one way, and not necessarily the preferred way, to correct reading deficiencies), it can be questioned whether as many course failures and retentions would have occurred for underachievers in secondary school if more of them had repeated grades in elementary school. 3rd to 6th Grade Reading Performance. It is generally felt that in the reading curriculum, basic skills should be mastered by the end of the 3rd grade, although not all children achieve this ¹⁰ However, the possibility of an artifact contributing to retained students being classified as overachievers has to be considered. Studies of secondary school dropouts, using this same population (Lloyd, 1967), indicated that retention in secondary school grades was so strongly related to dropout prior to completion of high school that it could only be concluded that retention in secondary school grades led to dropout as often or more often than to remediation of deficiencies. goal by then (Templeton, 1969). The 3rd grade also is an important point in the educational process in that research suggests that general learning patterns of children are largely determined by the end of the 3rd grade (Bloom, 1964; Vane, 1966). It therefore seemed important to determine whether the reading problems of 6th grade underachievers developed from deficiencies in primary grades or whether they stemmed from more recent difficulties encountered in elementary grades. The comparison of achievement groups on 3rd and 6th grade performance produced five findings: - (1) Underachievers had a significantly lower reading level than average or overachievers in the 3rd gr - (2) The pattern of achievement from the 3rd to the the grade showed a decrease in reading relative to grade placement for underachievers and average achievers, whereas, - (3) Overachievers maintained the same superior level of performance from grades 3 to 6, - (4) The decrease in performance from grades 3 to 6 was significantly greater for underachievers than for average and overachievers, - (5) The degree to which scores changed from grades 3 to 6 was related to the level of skill (i.e., grade placement) in the 3rd grade. The results show two factors operating to determine a pattern of reading achievement. The first is achievement status relative to ability. Being an overachiever or an underachiever, regardless of ability or intelligence level, has implications for future reading skills. The second factor is normative achievement level (i.e., in relation to standardized norms or grade placement). This achievement level in the 3rd grade is also predictive of future reading performance. These results taken separately and as they interact together have several implications for the identification and treatment of underachievers and, hopefully, for the planning of reading curricula in general. Finding (1) indicates that underachievement in reading begins in the primary grades for many students and that it should be possible to detect it by grade 3. 12 Both findings (1) and (4) indicate that the corrective action for underachievement in reading should be programmed as early as possible because the performance of underachievers does not remain a constant level lower than that of average achievers, but, rather, underachievers fall further behind in later grades. 13 Some cases of underachievement have been traced to beginnings as far back as the 1st grade (Shaw & McCuen, 1960). Analyses of the performance of these same subjects reported in Parts I and II of
this study show that after grade 6, underachievers never catch up to average achievers in reading and that their performance in all subject areas in secondary school is lower than that of average achievers. Finding (2) indicates that reading skills cannot be ignored in the elementary grades (grades 4-6). We examined our data very closely to determine whether some artifact accounted for the decrease in reading level of average achievers between these grades. This did not seem to be the case. The most likely cause for this decrease in normative placement was a de-emphasis on reading in grades 4 to 6. This de-emphasis was not necessarily in the overall reading program for the elementary grades. The results in our data could have been produced by inadequate attention to those children who had not mastered the basic skills taught in earlier grades. Finding (5) would suggest that it was the children in the low average range (those not far enough below expected level to be classified as underachievers, but not having complete mastery of basic reading skills) who were the most likely to show a decrease from grades 3 to 6. Finding (3) suggests that overachievers have attained sufficient skills by the end of the 3rd grade to insure their continued development of reading ability even under conditions that result in a decrease in grade placement for other students. Even with overachievers, however, it is necessary to consider the relationships of both relative and normative level to the pattern of achievement from grades 3 to 6. It was true that overachievers as a total group (drawn from the full range of IQ scores) had the same high reading level in grades 3 and 6. It was also true, however, that ١ the majority of this group was reading above grade placement in the 3rd grade, so that adequate mastery of basic reading skills war also a general characteristic of overachievers. 14 Overachievers in the high and low IQ groups, however, did not show the same pattern of achievement. High IQ overachievers, virtually all of whom were reading above grade placement in the 3rd grade, actually accelerated in reading level from 1.3 grade units above the norm in the 3rd grade to a full two grades above placement in grade 6. In contrast, a substantial proportion of the low IQ overachievers were not reading at grade placement in the 3rd grade. The performance of this group decreased .6 grade units between the 3rd and 6th grades. Thus, normative achievement level, or mastery of basic reading skills, was related to the performance of overachievers. The decrease in performance of the low IQ overachievers, however, was only half as great as that experienced by high IQ underachievers whose 3rd grade reading level was higher, illustrating the independent relationship that relative achievement status had to the longitudinal pattern of reading achievement. The concept of relative achievement provides useful information in that it seems to have effects that are independent of normative Overachievers had a mean 3rd grade reading score of 4.3, with a standard deviation of .85. The mean of the group was one standard deviation above grade placement (3.4); therefore it is estimated that 85% of that group had acquired average or better reading skills. achievement and ability level. It would be dangerous, however, to use relative achievement without also considering normative level of achievement, i.e., to ignore a reading level below grade placement because a child is an overachiever for his mental ability level. Since both relative and normative achievement level appear to have effects on subsequent achievement, it is necessary to consider both in interpreting results of group data, particularly in translating findings into expectations for individual students. ERIC *Full Taxt Provided by ERIC #### References - Bloom, Benjamin F. Stability and change in human characteristics. New York: Wiley, 1964. - Curry, Robert L. The effect of socio-economic status on the scholastic achievement of 6th grade children. <u>British</u> <u>Journal of Educational Psychology</u>, 1962, 32, 46-49. - Hollingshead, A. B. The two-factor index of social position. New Haven, Connecticut: Author, 1957. - Hollingshead. A. B., & Redlich, F. C. Social class & mental illness: A community study. New York: Wiley & Sons, 1958. - Lavin, David E. The prediction of academic performance. New York: Russel Sage Foundation, 1965. - Lloyd, D. N. Multiple correlation analysis of antecedent relationships to high school dropout or graduation. Laboratory Paper No. 21, Mental Health Study Center, National Institute of Mental Health, 1967. - Shaw, M. C., & McCuen, J. R. The onset of academic underachievement in bright children. <u>Journal of Educational Psychology</u>, 1960, 51, 103-109. - Templeton, Arleigh B., et al. Reading disorders in the United States: Report of the Secretary's (HEW) National Advisory Committee on Dyslexia and Related Reading Disorders. Washington, D.C., Department of Health, Education, and Welfare, 1969. - Vane, Julia R. Relation of Early school achievement to high school achievement when race, intelligence, and socio-economic factors are equated. <u>Psychology in the School</u>, 1966, 3, 124-129. # Reading Achievement And Its Relationship to Academic Performance Supplemental Data on High and Low IQ and SES Groups in Four Race-by-Sex Samples Dee Norman Lloyd Mental Health Study Center National Institute of Mental Health 1972 - ## Reading Achievement and Its Relationship to Academic Performance # Supplemental Data on High and Low IQ and SES Groups in Four Race-by-Sex Samples This supplement contains performance data of underachievers, average achievers, and overachievers in reading within each of the four race-by-sex samples, further stratified by ability level (IQ) and by parent's socio-economic status (SES). These data were used to supplement analyses reported in Parts II and III of this study, but were not tabled in those reports. They are summarized here so as to be available to those interested in the characteristics related to reading achievement within these more specific groupings. The data provide the means, standard deviations, and analysis of variance comparisons across achievement groups on 57 variables measuring elementary and secondary school performance and family background characteristics. The data are presented in 16 sections: - High SES (levels 1-3) White males 1. - Low SES (levels 4 & 5) 2. - High IQ (IQ scores 100 and above) 3. - Low IQ (IQ scores below 100) 4. White females - High SES (levels 1-3) - Low SES (lev^1s 4 & 5) 6. ** . 11 - High IQ (IQ scores 100 and above) 7. ** 11 - Low IQ (IQ scores below 100) 8. - High SES (levels 1-4) 9. Negro males - Low SES (level 5) 10. 11 - High IQ (IQ scores 86 and above) 11. - Low IQ (IQ scores 85 and below) 12. 13. Negro females - High SES (levels 1-4) 11 - Low SES (level 5) 14. ** - High IQ (IQ scores 86 and above) 15. - Low IQ (IQ scores 85 and below) 16. > Classification of High and Low IQ groups was based on scores earned on the California Test of Mental Maturity (CTMM) administered in the 6th grade. Classification into High and Low SES levels was made using the Hollingshead Two-Factor Index of Social Position. This index consists of a weighted composite of the occupational and educational levels of the subject's father when the subject was in the 6th grade. The stratifications into High and Low IQ and High and Low SES groups differ in the white and Negro samples. Divisions were made close to the means of the samples on these measures so as to achieve a balanced comparison. High and Low IQ levels were defined as above and below an IQ score of 100 in the white samples, and above and below an IQ score of 86 in the Negro samples. High SES consisted of levels 1 through 3 in the white samples, and 1 through 4 in the Negro samples. In each section, the three achievement groups are compared on the same 57 variables. The variables (J) are numbered as follows: - 1 Age in 6th Grade (Months) - 2 Education Level of Father - 3 Education Level of Mother - 4 Number of Siblings - 5 Occupation Level of Father - 6 SES Level - 7 6th Grade Point Average* - 8 6th Grade CTMM IQ Score - 9 Days Absent 1st Grade - 10 Days Absent 2nd Grade - 11 Days Absent 3rd Grade - 12 Days Absent 4th Grade ``` 3rd CAT - Reading Total* 6th CAT - Reading Vocabulary* 14 Outcome (Dropout or Graduation) 6th CAT - Reading Comprehension* 3rd CTMM IQ Score 17 6th CAT - Reading Total* 6th CAT - Arithmetic Total* 6th CAT - Language Total* 20 English GPA* 21 Social Studies GPA* Science GPA* Mathematics GPA* Business GPA* Vocational GPA* 26 Foreign Language GPA* 27 Music GPA* . 28 Art GPA* Physical Education GPA* GPA (Full Unit) 7th Grade* 31 32 GPA (Full Unit) 8th Grade* GPA (Full Unit) 9th Grade* 33 34 GPA (Full Unit) 10th Grade* GPA (Full Unit) 11th Grade* GPA (Full Unit) 12th Grade* 36 Lorge-Thorndike IQ Score (7th Grade) 37 Lorge-Thorndike IQ Score (10th Grade) 39 Cornell Medical Index (11th Grade) 40 SAT Reading Average (7th Grade)* 41 SAT Spelling (7th Grade)* 42 SAT Language (7th Grade)* SAT Arithmetic Average (7th Grade)* SAT Average Achievement Score (7th Grade)* SAT Paragraph Meaning (9th Grade)* SAT Word Meaning (9th Grade)* SAT Reading Average (9th Grade) ITED Social Concepts (9th Grade) ITED Natural Science (General) (9th Grade) ITED English Expression (9th Grade) 50 ITED Quantitative Thinking (9th Grade) 51 ITED Social Studies Reading (9th Grade) ITED Natural Science Reading (9th Grade) 53 ITED Literature (9th Grade) ITED Vocabulary (9th Grade) TTED Use of Information (9th Grade) 57 Discrepancy Score (6th CAT - Reading Total minus 6th CTMM Predicted Reading Total) ``` ٥ Variables followed by an asterisk (*) are fractional scores (GPA's and grade equivalent scores) that were treated as whole numbers in the computations. The decimal on means and standard deviations of these variables should be moved one place to the left for interpretation. Coding
procedures for family background and absence measures are found in the procedures sections of the main reports. A constant of 10 was added to discrepancy scores (Variable #57) to avoid handling negative numbers in computations. The means of the race-by-sex samples (total column) therefore appear as 10 rather than 0. This score is also in grade equivalents, but treated as a whole number in computations and should have the decimal on the mean and standard deviation moved one place to the left for interpretation. The omega² statistic represents the proportion of variance accounted for across achievement groups, in contrast to tables in the main reports where this statistic was given as a percentage. LLUYU 1-14: SEAUTING DEFICIENCY ANALYSIS OF VARIANCE NUNS WHITE MALES - High SES LLUYU 1-1985 **.** 969-000 0.0 MITH ELIMINATION CODE FUR CLAS. VAR = . . -9.000. 0.0 2000 **0** 000.666 • 3.030 0.0 0,000 91.000. 108.000, 993.000; 10 CLASSIFICATION VAR = # 57 1.000 0.0 00000 CCOLES TO BE EXCLUDED FOR VARS 1 TO 51 AKE 0.0 . MITH RANGE OF ceas calfoony UPPER LIMITS # ٥ FLSTRICTION VAR = # .. LF VARIABLES = o. FURRAT LF DATA IS (5756.0) MAX # UF UBS TO SE INCLUDED THIS PRUBLEM = 1096 DATA TO BE READ FROM TAPE WITHOUT REWIND GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS > LLUYD 1-14: RLADING DEFICIENCY ANALYSIS OF VARIANCE KUNS ERIC Fruited by ERIC | (A) | |-------| | SES | | High | | ŧ | | MALES | | Ľ, | | H | | +0+ | | 1-1 | | CYUZI | | UMEGA ST | 0.0176 | 0.0013 | 1.000.0- | 6300.0 | *000*n- | -0.0005 | 6840.0 | 3.00.6 | 0.0415 | 0.0017 | 0.0036 | 0.0024 | |----------------|---------------------|-----------------|-----------------|-----------------|------------------|-------------------|---------------------|----------------------|-----------------|-------------------|-----------------|-----------------| | F RATTU | 7.5343 | 1024-1 | 0.9725 | 1.3177 | 0.0893 | 0.8080 | 22.3754 | 1.9427 | 1.2633 | 1.4333 | 1.8626 | 1.6502 | | MEAN SWJARE | 257.2637
34.1456 | 3.7302 | 2-5223 | 2.4737 | 1.056d
1.5331 | 0.6247 | 492.3538
22.0042 | 463.2281
246.7432 | 2.2009 | 1.4219 | 2.5965 | 2.2613 | | ٠
٩ | 2
111
713 | 2
713
712 | 2
712
714 | 2
111
711 | 2
105
7.57 | 2
71.7
71.9 | 2
583
690 | 2
711
715 | 2
353
301 | 400
400
402 | 2
474
874 | 2
527
529 | | SUM JF SEUARES | 514°5274 | 7.5003 | 4.9058 | 4.9475 | 2.1130 | 1.2495 | 984.7075 | 906.4563 | 4.4014 | 3.7915 | 5.1930 | 4.5226 | | | 244°2°3837 | 1325.7047 | 1795.8e35 | 1346.0511 | 1.060.8172 | 554.3825 | 15138.8430 | 174346.7312 | 6.25.4324 | 568.7544 | 659.3868 | 722.1491 | | | 249°0°9111 | 1533.2651 | 1800.7692 | 1350.9986 | 1.082.93.08 | 525.6319 | 16123.6006 | 175313.1875 | 4.4014 | 572.5459 | 66.5798 | 726.6717 | | SOURCE | BETHEN GRUUPS | DETACEN GRUUPS | GLINGEN GRUUPS | BETACEN GRUUPS | GETWEEN GROUPS | DETWEEN GRUUPS | BETWEEN GRUUPS | DETMEEN GACOPS | BETWEEN GROUPS | BETAFEN GROUPS | BETWEEN SRUUPS | BEIMEEN GROUPS | | | #11HIN GRUUPS | MITHIN GRUUPS | WITHIN GRUUPS | AITHIN GRUUPS | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GRUUPS | MITHIN GKC >S | MITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | | | 1JTAL | TJIAL | TOTAL | TUTAL | TJTAL | TOTAL | JUTAL | TOTAL | TOTAL | TOTAL | TJIAL | TUTAL | | TOT AL | 720 | 713 | 715 | 720 | 708 | 720 | 691 | 720 | 362 | 403 | 476 | 530 | | | 139-261 | 2-370 | 2-923 | 1.776 | 2.823 | 2-215 | 20-239 | 108-229 | 3-077 | 2-643 | 2.769 | 2-279 | | | 5-696 | 1-605 | 1-586 | 1.371 | 1.238 | 0-879 | 4-834 | 15-792 | 1-321 | 1-193 | 1.183 | 1-172 | | m | 130 | 136 | 135 | 130 | 135 | 136 | 129 | 136 | 63 | 71 | 83 | 93 | | | 140.852 | 2-382 | 2.403 | 1.010 | 2•726 | 2-170 | 21.977 | 106.044 | 3.286 | 2.817 | 2.964 | 2.473 | | | 6.515 | 1-597 | 1.557 | 1.048 | 1•230 | 0-902 | 4.818 | 16.626 | 1.419 | 1.161 | 1.292 | 1.239 | | ~ | 486 | 480 | 483 | 486 | 479 | 4.86 | 467 | 486 | 252 | 281 | 329 | 366 | | | 139.045 | 2.323 | 2.874 | 1.805 | 2-833 | 2.206 | 20.266 | 108.977 | 3.060 | 2.580 | 2. 754 | 2-227 | | | 5.638 | 1.599 | 1.602 | 1.430 | 1-266 | 0.880 | 4.628 | 15.759 | 1.330 | 1.193 | 1. 1 62 | 1-142 | | -4 | 98 | 97 | 97 | 98 | 94 | 98 | 95 | 98 | 47 | 51 | 64 | 71 | | | 138-092 | 2.629 | 3•113 | 1.867 | 2-915 | 2.316 | 17-737 | 107-551 | 2.894 | 2•745 | 2.594 | 2.296 | | | 5-863 | 1.635 | 1•554 | 1.455 | 1-133 | 0.845 | 4-825 | 14-560 | 1.108 | 1•197 | 1.123 | 1.224 | | | 4 12 y | : x 3 | 2 K .0 | 2 % 7 | S E S | S Z Y | N 3 Z | 2 × 3 | ZZS | S & Q | S E Q | N E N | | 7 | - | יאי | m | * | S | ٠ | ~ | 3 | Φ | 01 | 11 | 12 | LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLUYD 1-140: WHITE MALES - High SES ! | ONEGA SQ | 9*80*0 | 0.2079 | 0.0067 | 0.1569 | 0.0079 | 0.2204 | 0.0425 | 0-0746 | 0.0489 | 0.0465 | 0.0263 | 0.0267 | |----------------|--|--|--|---|--|--|---------------------------------------|--|--|--|--|--| | F RATIO | 22.7604 | 95.4930 | 2.7951 | 67.9770 | 2.8989 | 106.3742 | 16.8503 | 79.6901 | 18.1053 | 17.2473 | 8448 | 10.1179 | | MEAN SQUARE | 1676.7652 | 21130.4690
221.2778 | 0.4429 | 13133.7689
193.2092 | 635.2483
219.1354 | 17861.3032
167.9102 | 1110.5691
65.9081 | 2603.1193
87.6763 | 1493.17 <i>27</i>
82.4717 | 1500-4020
86-9934 | 874.3764
98.8574 | 967.7380
95.6462 | | Ä | 2
469
471 | 2
717
719 | 2
533
535 | 2
717
719 | 476
478 | 2
71.7
71.9 | 2
711
713 | 7
60 <i>1</i>
711 | 665 | 2
609
605 | 2
573
541 | 2
662
664 | | SUM OF SQUARES | 3353.5303
34551.4167
37504.9470 | 42260.9380
1586>0.1606
200917.0986 | 0.8858
84.4575
85.3433 | 25257.5379
1.38530.9607
1.64.798.4986 | 1270.4965
134308.4596
1C5578.9502 | 35722-6065
120391-5810
156114-1475 | 2221-1382
46860.6503
49081-7885 | 5200-2347
52152-5254
57368-7640 | 2586.3455
54078.7116
57665.0571 | 300°8040
57676°5270
66677°509 | 1748.7528
57238.4517
58961.2045 | 1955.4760
63317.8042
65253.2442 | | SOURCE | BETYLEM GROUPS
WITHIN GROUPS
TOTAL . | DETWEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWIEW GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
#ITHIN GROUPS
TOTAL | BETWEEN GROUPS WITHIN GROUPS | DETALEN GRUUPS
WITHIN GRUUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRUUPS
#1141N GRUUPS
TUTAL | BETWLEN GRUUPS
WITHIN GRUUPS
LUTAL | | TOTAL | 472
39.989
8.971 | 720
61.074
16.716 | 536
2-813
0-399 | 720
64-751
15-140 | 479
113.459
14.862 | 720
62-396
14-735 | 714
62-772
8-297 | 712
61.567
9.734 | 666
30-898
9-312 | 666
32-107
9-552 | 582
29.919
10.076 | 865
30.716
9.913 | | ĸ | 83
43.952
7. 256 | 136
72-265
15-169 | 94
2-872
0-335 | 136
74-331
16-019 | 83
114-145
13-356 | 136
72.941
13.973 | 134
64.321
8.960 | 136
04.603
9.175 | 121
34.207
9.440 | 121
35.562
9.631 | 103
33.029
10.466 | 121
33.240
10.540 | | 7 | 32.7
40.073
8.689 | 486
61.177
15.051 | 369
2.810
0.402 | 486
04.459
13.670 | 335
114.066
15.093 | 486
62•368
12•956 | 482
63.214
7.936 | 478
61.992
9.30b | 458
30.854
9.281 | 458
31.996
9.475 | 405
29. 76+
10. 064 | 457
30. 744
9. 864 | | ~ | 62
34.242
9.598 |
98
45.031
13.517 | 73
2.726
0.449 | 98
52.508
11.694 | 61
109 • 197
15 • 053 | 98
47.896
11.405 | 98
58.480
7.791 | 98
25•286
9•881 | 87
26.529
7.325 | 67
27.885
8.008 | 74
26.170
6.397 | 87
27.057
6.083 | | | 3 ± 3 | * £ y | S E J | 5 £ 3 | 2 7 7 | \$ 4 3 | 4 Z y | 2 € 3 | 5 £ 3 | 2 5 7 | 2 % 2 | 2 2 3 | | 7 | 13 | 4 | 15 | 16 | 1.7 | 8 | 7 | 07 | 12 | 77 | 23 | 54 | 69 LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS > LLJYD 1-148: IMITE MALES - High SES | UME LA SU | 0.0271 | 0.0179 | 0.0163 | 1610.0 | 0.0058 | 0.00.0 | 0.0478 | 1650-0 | 0.0332 | 4210.0 | 0.0210 | 0.0131 | |----------------|----------------------|---------------------|----------------|---------------------|---------------------|-----------------|----------------------|-----------------|---------------------------------------|--|---------------------|---------------------| | F KATIU | 4.7297 | 7.0278 | 4.2450 | 1.3979 | 2.7686 | 2.6677 | 17.7323 | 13.7346 | 11.0886 | 7.4867 | 5.9517 | 5.0527 | | MEAN SQUAKE | 043.8331
136.1245 | 460.6259
65.2437 | 153.0016 | 658.4859
84.0094 | 236.9338
85.5788 | 127.8983 | 1708.7433
96.3631 | 1471.7832 | 1035.9276
93.4228 | 029.2443 | 475-1535
79-8352 | 2>4.4376
65.9381 | | J. | 205
205
267 | 2
629
661 | 348
390 | 655
657 | 2
006
608 | 2
600
660 | 7 990
990 | 2
023
025 | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 8 7
2 2 5
2 2 5
2 5
2 5
2 5
2 5
2 5
2 5
2 5 | 454 | 2
420
423 | | SUM UF SQUARES | 12 d7.0663 | 921.2518 | 12 59.4936 | 1316.9719 | 473.8677 | 255.7906 | 3417.4867 | 2943.5664 | 2 C71 • 8552 | 1254.4087 | 950.3070 | 2669.0218 | | | 36 C73.0016 | 43195.2678 | 59387.9028 | 58501.1497 | 51860.7629 | 31540.7511 | 63935.0860 | 66760.0199 | 5425 • 9046 | 58553.0033 | 38564.5260 | 2669.0218 | | | 37360.6679 | 44114.5196 | 60687.3964 | 55618.1216 | 52334.0305 | 31862.5477 | 67402.5727 | 69703.5863 | 5663 0• 7598 | 5811.4120 | 37514.8330 | 26597.6970 | | SUURCE | BETWEEN GROUPS | BETWEEN GROUPS | BETWEEN GROUPS | GETHERN GROUPS | BEINEEN GROUPS | BETWEEN GRUUPS | GETNEAN GRUUPS | BETWEEN GROUPS | BETWEEN GROUPS | BETWEEN GROUPS | SETWEEN GROUPS | BETWEEN GREUPS | | | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIA GROUPS | Alimia GROUPS | WITHIN GRUUPS | WITHIN GRUUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | MITHIA GREUPS | | | TOTAL | TJTAL | FUTAL | BJIAL | Total | TOTAL | TUTAL | TJIAL | TJTAL | 13TAL | IJIAL | TOTAL | | TOT AL | 268 | 662 | 391 | 658 | 609 | 661 | 667 | 626 | 587 | 551 | 461 | 429 | | | 28-407 | 35-073 | 27-322 | 36.748 | 33.404 | 39.685 | 33.237 | 33.209 | 32-186 | 28.96 <i>1</i> | 29.796 | 31-788 | | | 11-829 | 8-169 | 12-474 | 9.526 | 9.278 | 6.942 | 10.060 | 10.561 | 9-831 | 10.42d | 9.031. | 8-174 | | * | 53 | 119 | 75 | 121 | 103 | 119 | 125 | 112 | 104 | 98 | . 84 | 83 | | | 32.038 | 37.034 | 29.560 | 38-174 | 34.825 | 40.529 | 36-472 | 36-875 | 34.846 | 31.561 | 31.881 | 33.434 | | | 12.213 | 8.674 | 12.339 | 10-257 | 8.701 | 6.624 | 9-391 | 10-124 | 10.485 | 10.843 | 9.108 | 8.943 | | 7 | 182 | 456 | 272 | 450 | 423 | 455 | 453 | 432 | 407 | 381 | 315 | 292 | | | 28•104 | 35.000 | 27-445 | 37.031 | 33.409 | 39.732 | 33.300 | 33.051 | 32.287 | 28.843 | 29.844 | 31.743 | | | 11•711 | 8.182 | 12-661 | 9.288 | 9.419 | 7.120 | 10.130 | 10.604 | 9.669 | 10.665 | 9.047 | 8.097 | | - | 33 | 87 | 44 | 87 | 83 | 87 | 89 | 82 | 76 | 72 | 62 | 54 | | | 24.242 | 32.770 | 22.750 | 33.299 | 31.614 | 38.287 | 28.371 | 29 • 0 3 7 | 28.000 | 26.097 | 26.726 | 29.500 | | | 10.446 | 6.696 | 10.431 | 8.982 | 9.038 | 6.245 | 8.705 | 9 • 2 4 1 | 8.390 | 7.431 | 8.078 | 6.804 | | | Ç Z Z | s Æ y | Z £ 7 | 257 | Z Z Ŋ | 2 £ 3 | S E N | 2 E 19 | 2 Z J | 2 X N | .s & y | 2 X .Q | | יר | 52 | 26 | 2.1 | 28 | 53 | 30 | 33 | 32 | 33 | 34 | 8
7 | 36 | LLJYD 1-14: REBUING OLFICIENCY ANALYSIS OF VARIANCE KUNS | SES | |--------| | High | | | | MALES | | 15 | | H | | 1-140: | | 777 | | UNEGA SA | P640*0 | 0.0563 | -0.0017 | 0.0703 | 0.0392 | 0.0547 | 0.0275 | 0.0656 | 0.0584 | 0.0651 | 9080*0 | 0.0487 | |----------------|-------------------------|-----------------------|-----------------|------------------------|-----------------------|------------------------|-----------------------|-----------------------|-----------------------|--------------------------------|-----------------------|---------------------| | F RATEO | 18.1151 | 15.4450 | 0.7490 | 24.1770 | 13.9977 | 19.0841 | 9.9578 | 22.2397 | 14.5283 | 21.2797 | 20.1657 | 13-9140 | | MEAN SQUARE | 4174.5330
230.4451 | 3299.3035
213.6157 | 1.0841 | 10753.4088
434.0373 | 4465.8602
319.0431 | 10846.1912
568.3367 | 1838-8553
184-6644 | 5977.6569
268.7834 | 5323.2235
366.4044 | 630 7. 9366
296.4303 | 5784.8597
286.8667 | 440.9217
31.6890 | | ğ | 2
650
65 2 | 2
461
483 | 2
295
237 | 2
626
628 | 2
634
636 | 2
622
624 | 2
631
633 | 2
602
604 | 2
433
435 | 433
435 | 433
433
435 | 502 | | SUM OF SQUARES | 8349.0669 | 6598-6071 | 2.1682 | 21500.4177 | 8931.7205 | 21692.3823 | 3677.7106 | 11 955,3139 | 10646.4471 | 12615.8732 | 11569.7194 | 851-8434 | | | 149749.2892 | 102749-1347 | 426.9895 | 271648.5400 | 202273.3564 | 353505.4577 | 116523.2295 | 161807,5886 | 158653.1011 | 128354.3194 | 124213.2783 | 15907-8715 | | | 158138.3553 | 109347-7417 | 429.1577 | 253195.3577 | 211205.0769 | 375197.8400 | 120200.9401 | 173762,9025 | 169299.5482 | 14C970.1927 | 135782.9977 | 16789-7149 | | SUUNCE | DETMEEN GROUPS | BETWEEN GRUUPS | BETWEEN GROUPS | BETWEEN GRUUPS | BEIWEEN GRUUPS | BETWEEN GRUUPS | BETWEEN GRUUPS | BETWEEN GROUPS | BETWEEN GROUPS | BETWEEN GRUUPS | BETWEEN GROUPS | BETWEEN GROUPS | | | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GROUPS | WITHIN GRUUPS | MITHIN GRUUPS | MITHIN GRUUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GROUPS | WITHIN GROUPS | | | TJIAL | IJTAL | TOTAL | TJIAL | TOTAL | TOTAL | TJTAL | TOTAL | 131AL | 13TAL | TJIAL | TOTAL | | TOTAL | 053 | 484 | 298 | 629 | 637 | 625 | 634 | 605 | 436 | 436 | 436 | 505 | | | 106.095 | 111-246 | 2 -567 | 75-202 | 65.055 | 64.784 | 70.836 | 70-276 | 100-869 | 104 _{2.261} | 102-502 | 14-976 | | | 15.574 | 15-046 | 1-202 | 21-607 | 18.223 | 24.521 | 13.780 | 16-961 | 19-728 | 18.002 | 17-668 | 5-772 | | ጥ | 115.11 | 90 | 58 | 116 | 118 | 116 | 117 | 114 | 76 | 76 | 76 | 87 | | | 111.217 | 113.449 | 2.586 | 82-621 | 69.398 | 71.081 | 72.650 | 75-360 | 105.658 | 110.711 | 108.184 | 15.943 | | | 15.907 | 14.567 | 1.093 | 21-969 | 18.371 | 25.191 | 13.484 | 16-365 | 15.627 | 14.385 | 13.649 | 5.925 | | ~ | 449 | 329 | 203 | 430 | 435 | 430 | 432 | 411 | 303 | 303 | 303 | 349 | | | 107.151 | 112.474 | 2-522 | 75• 793 | 65.580 | 62,533 | 71.530 | 70.91 <i>2</i> | 101-970 | 105•043 | 103.422 | 15•384 | | | 15.181 | 14.507 | 1-224 | 20• 755 | 18.093 | 24,100 | 13.866 | 16.777 | 19-186 | 16•599 | 16.789 | 5•610 | | 7 | 85 | 65 | 37 | 63 | 84 | 79 | 85 | 80 | 57 | 57 | 57 | 65 | | | 98.5 51 | 131.923 | 2.744 | 01.771 | 20-202 | 50.562 | 54.812 | 59• 7 63 | 68•632 | 91.509 | 90.035 | 11.696 | | | 14.003 | 14.929 | 1.25u | 19.560 | 15-796 | 20.014 | 12.233 | 14• <i>2</i> 93 | 22•624 | 23.002 | 21.179 | 5.339 | | | > £ y | 2 T } | 2 - 7 | ያ ፔ ያ
ጋ | 2 + 7 | 2 6 3 | .z ·z ·î | S E N | 2 5 3 | SEV | 2 % 0 | 3 × y | | 7 | 37 | 3 a | 56 | 4 | 41 | 45 | 43 | 4 | 4.5 | 9 | 14 | 9 | LLJYJ I-14: READING DEFICIENCY ANALYSIS OF VARIANCE KUNS | SES | |--------| | High | | | | MALES | | 프 | | II. | | 1-149: | | CKCJJ | | ند | | | | UME GA SE | ٠٥٤٥٠ | J.0524 | 0.0230 | 0.0752 | 0.0413 | 0.0717 | 9990.6 | 5050°0 | 0.7343 | |----------------|--|--------------------------------------|--|--|--|--|--|--|--| | F RATIO | 8.9759 | 15-1773 | 7.0255 | 51.6009 | 11.9315 | 20.6456 | 19-2942 | 14.4658 | 995.7729 | | MEAN SQUARE | 291.9632
32.5275 | 340.7032
22.8430 | 264.4107
38.2053 | 31.9305 | 453.8001
38.0339 | 638.2283
30.9135 | 531.6474
27.5548 | 475.6630
32.8820 | 19901.3302
19.9458 | | J. | 764
764 | 2
510
512 | 2
510
512 | 506
506 | 505
507 | 50e
50e
50e | 507
508
509 | 2
503
505 | 2
71.7
71.9 | | SUN OF SEUARES | 283.9263
16190.1757
1675G.1020 | 643.4064
11620.2115
12343.6179 | 536.8213
19444.0875
2021.5048 | 1376,1563
16077,8693
17456,0276 | 907.001
19207.1243
26114.7244 | 1276-4560
15642-2428
16518-0994 | 1 c63.2948
13970.3052
15633.6000 | 951.3259
16539.6227
17490.9436 | 35 EC2.6604
14329.8271
54132.4875 | | SOURCE | DEINEEN GRUUPS
AIIMIA GRUUPS
IJIAL | DETWEEN GROUPS AITHIN GROUPS | GETWEEN GROUPS
Mainin Groups
Jutal | DETWLEN GRJUPS
WITHIN GRDUPS
131AL | GETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
IJTAL | BETAEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
LJIAL | BETNEEN GROUPS
WITHIN GROUPS
TOTAL | | TOT AL | 500
16.780
5.794 | 513
14.027
4.910 | 513
16-427
6-253 | 507
15-369
5-474 | 508
14-433
6-299 | 509
12-872
5-771 | 510
15-200
5-435 | 506
15-213
5-885 | 720
101-121
8-677 | | ** | 86
17•779
5•965 | 94
15-343
5-312 | 90
17.344
6.505 | 89
17-101
5-479 | 91
15.015
6.6d2 | 34
14-663
5-992 | 89
16-51 <i>7</i>
5-366 | 88
16-511
5-901 | 13.390
4.950 | | ~ |
346
17.058
5.554 | 349
14•263
4•775 | 353
16.688
6.237 | 350
15- 700
5- 740 | 350
14.763
0.157 | 354
13.136
5.524 | 350
15-571
5-274 | 349
15.544
5.632 | 486
100.500
4.464 | | -4 | 08
14.147
6.062 | 70
11.329
3.977 | 7C
13.929
5.325 | 68
11.397
5.370 | 67
11.104
5.442 | 66
9.042
5.130 | 71 11.718 4.969 | 69
11.884
6.031 | 98
87•143
3•739 | | | 257 | 8 £ 3 | 3 4 9 | 2 % 3 | z i y | . z .) | ZEÑ | Σ Σ ^Ω | د د ع د | | 7 | 4 | ð.
S | 51 | ر د
ح | w
w | 4 | 55 | 56 | 2.5 | 73 LEDYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLUYD 1-14C: WHITE MALES - LOW SES | | • | | | | | | | | |-------------------------------------|--|-----------------------|---|--------------|-------|-----|-----|-----| | | • | | | • | • | • | • | • | | | 0.0 . 0.0 | | | 0.0 | 0.0 | 0.0 | 9 | | | 000 | • | | • | | _ | _ | _ | | | 999-040 | 0.0 | | 0.0 | . 0.4 | • 0•0 | 0.0 | • 0 | • | | 88 | | | • | | | | | | | YAR | • | | 0 | ÷ | • | • | • | | | 3 | • | | ð | ğ | • | • | • | | | CLA | • | | • | 1.000. | Ŏ | Ö | Ö | | | ğ | o | | 8 | _ | _ | _ | _ | | |)E F | • | | 6- | • 0•0 | ŏ | ŏ | ŏ | | | WITH ELIMINATION CODE FOR CLAS. VAR | . 0.0 . 0.0 . 0.0 . 0.0 | | _ | o | ö | Ö | ö | | | ION | 9 | | • | | | | _ | | | NAF | 0 | | 0.0 | 0.0 | Э | | | 000 | | IWI | • | 0 | | 0 | • | • | • | 99. | | I EL | 0 | 5.000 | | | | | | • | | 111 | | 31 | 0.0 | • | • | • | • | • | | .5 | 9 | | | 9 | 0 | 0 | 0 | 0 | | ~ | 9 | = | • | | | | | | | ις
| 66 | 4.000 TO | 0.0 | • | • | • | • | • | | VAR = # 57 | ŝ | 4 | | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | VAR | 8.0 | | 'n | | | | | | | CA | 10 | Q. | AR | • | • | • | • | • | | CLASSIFICATION | 90 | MITH RANGE OF | 2 | 0.0 | 0.0 | 0.0 | 0.0 | 0 | | 1+1 | 91. | RA | 10 | 0 | • | _ | • | 0 | | ASS | | H | ~ | • | • | • | • | • | | CL | ! | 38 | VAR | ?
• | 0 | 0 | 0 | 9 | | | I WI I | | ğ | 0 | 9 | Э | 0 | 0 | | 25 | 77 | * | 0.3 | • | • | • | • | • | | ŧį | PPE | 1) | Ŝ | 0 | • | • | 0.0 | • | | LES | 5
≻ | VAR | EXC | Ó | Ó | Ó | Ó | Ŏ | | NU UF VAKTABLES = 57 | CLAS CATEGURY UPPER LIMITS = 91.000, 108.000, 990.000, | KESTRICTION VAR = # 6 | COUES TO BE EXCLUDED FOR VARS 1 TO 57 ARE | • | • | • | • | • | | VAK | ATE | 101 | 10 | ٥ • 0 | ó | ŏ | ŏ | ó | | U.F |) S | SIK |)E.S | Ö | Ö | ö | ဝ | ö | | Š | 3 | A. | Ž | | | | | | | | | | | | | | | | FURMAT OF DATA IS (57F6.0) MAX # GF UBS TO BE INCLUDED THIS PROBLEM = 1696 DATA TO BE READ FROM TAPE WITHOUT REWIND SROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLOVD 1-14: READING DEFICIENCY ANALYSIS UF VARIANCE RUNS LLOYD 1-14C: WHITE MALES - Low SES | ONEGA SQ | 0.0136 | -0.0006 | -0.0023 | 8000°0 | -0.0018 | 0.000 | 0.0459 | 0.0020 | 2.000.0 | 7000°0- | 0.0076 | -0.0011 | |----------------|--|--|--|--|--|--|--|--|--|--|--|----------------| | F RATIO | 6 2 3 4 9 9 | 0.7536 | 0.0750 | 1.3317 | 0.2885 | 1.3068 | 19.8872 | 1.8015 | 1.0379 | 0.8309 | 3.1996 | 0.6522 | | MEAN SUUARE | 323.6708
49.1086 | 0.7422 | 0.1361 | 4-4232
3-3214 | 0.1090
0.3778 | 0.1107 | 473-4982
23-8092 | 408.8545
200.2000 | 2.0317
1.9576 | 1.4409 | 4.6608
1.4567 | 1.0532 | | Ą | 2
810
812 | 2
801
803 | 2
801
803 | 2
810
812 | 2
796
798 | 2
610
612 | 2
702
784 | 2
810
812 | 2
451
493 | ,
505
507 | 2
563
571 | ~ | | SUM OF SQUARES | 647.3417
39777.9794
40425.3210 | 1.4844
748.8477
790.3321 | 0.2122
1133.2642
1133.4764 | 8.8465
2090.3639
2699.2103 | 0.2180
3.00.7557
3.00.9737 | 0.2843
49.6615
49.9508 | 940.9963
18010.7998
19565.7962 | 937.7090
210410.5936
211748.3026 | 4-0634
832-4618
846-9251 | 2.4817
475-7069
478-58:5 | 9.3216
626.8654
636.1871 | 7-1065 | | SOUNCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GRUUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
MITHIN GRUUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
137AL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GRUUPS
WITHIN GRUUPS
TJIAL | BETAEEN GRUUPS
WITHIN GRUUPS
TJIAL | BETWEEN GROUPS | | TOT AL | 813
141.103
7.056 | 804
4.668
0.992 | 404
4.290
1.188 | 813
2-321
1-823 | 799
5.274
0.614 | 413
4.127
0.333 | 785
18-108
4-996 | 813
99.339
16.148 | 454
2.894
1.399 | 508
2.569
1.316 | 572
2.624
1.212 | 634 | | æ | 116
143.121
8.153 | 114
4-614
1-060 | 114
4.281
1.009 | 116
2-129
1-660 | 115
5.235
0.753 | 116
4.147
0.355 | 114
19.693
4.946 | 116
97.121
18.807 | o5
3.123
1.474 | 69
2.667
1.411 | 40
2.447
1.253 | 98 | | 7 | 560
140.952
6.982 | 554
4.657
0.969 | 555
4.283
1.220 | 560
2.316
1.846 | 552
5.283
0.581 | 560
4.114
0.318 | 539
18-312
4-969 | 5e0
99.400
15.957 | 315
2.863
1.411 | 354
2.588
1.331 | 395
2.585
1.186 | 445 | | 7 | 137
140.015
5.994 | 136
4.757
1.029 | 135
4•3∠6
1•202 | 137
2.504
1.856 | 132
5.273
0.619 | 137
4.161
0.368 | 132
15.909
4.698 | 137
100-971
14-295 | 74
2.824
1.275 | 85
2.412
1.168 | 97
2.897
1.254 | 106 | | | × 3 | S E S | N X N | S E S | SEJ | S E S | S Z Z | S & S | ZEN | 2 2 S | , x 3 | z | | 7 | - | ~ | m | 4 | IV. | 9 | ~ | 80 | O r | 0 | - | | LLUYU 1-14: RLADING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLUYD 1-14C: WHITE MALLS - LOW SES | UMEGA SQ | u.0576 | 0*0805 | 0.0012 | 7091-0 | 0.0026 | 0.2117 | 0.0402 | 0.0619 | 0.0381 | 0.0306 | 0.0075 | 0.0397 | |----------------|----------------------|------------------------|-----------------|------------------------|----------------------|-----------------|--------------------------------------|----------------------|------------------------------|---------------------|---------------------|----------------------| | F RATIO | 17.3993 | 36.5958 | 1.3981 | 78.3499 | 1.7552 | 110.1567 | 17.8288 | 27.3872 | 16.1244 | 13.0805 | 3.5018 | 16.8332 | | MEAN S WARE | 1342.0750
80.0076 | 22549.4620
ol6.1757 | 0.3464 | 12367-1270
157-8448 | 462.7946
263.6769 | 18830-9301 | 1247.6515 | 2703.2298
98.7043 | 958. 17 02
59.4609 | 856.9442
65.5133 | 257.8134
73.6231 | 1143.4731
67.9295 | | ż | 2
534
530 | 2
310
812 | 2
644
086 | 2
807
809 | 506
508 | 2
610
812 | 2
301
803 | 2
797
799 | 2
761
763 | 2
762
764 | 662
664
664 | 2
762
764 | | SUM OF SHUARES | 2784.1500 | 45098.9240 | 0.6928 | 24734.2539 | 925.5892 | 37661-8601 | 2495 _• 3030 | 5406.4595 | 1917-5403 | 1713.8883 | 515-6267 | 2246.9461 | | | 42724.0437 | 459102.3085 | 169.4644 | 127380.7893 | 149241.1419 | 138456-8065 | 56053 _• 59 ₀ 3 | 76667.2892 | 45249-7371 | 49921.1235 | 48738-5146 | 51762.2774 | | | 45508.1937 | 544201.2325 | 170.1572 | 152115.0432 | 150166.7311 | 176128-6667 | 58548 _• 8993 | 84C73.7488 | 47167-2775 | 51635.0118 | 49254-1414 | 54049.2235 | | SUURLE | BETWEEN GROUPS | BEINEEN GRUUPS | BETWEEN GROUPS | BETWEEN GKÜUPS | BETWEEN GROUPS | BETWEEN GROUPS | BETWEEN GROUPS | BETWEEN GRUUPS | BETWEEN GROUPS | BETWEEN GROUPS | BEINEEN GRUUPS | BETWEEN GRUUPS | | | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GROUPS | WITHIN GRÖUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GRUUPS | | | TOTAL | TUTAL | TJIAL | TÜTAL | TOTAL | Tutal | IJTAL | TJIAL | TOTAL | TOTAL | TJIAL | TUTAL | | TUTAL | 537 | 813 | 667 | 810 | 569 | 813 | 804 | 800 | 764 | 765 | 665 | 765 | | | 35.490 | 52.450 | 2.651 | 56.821 | 104-712 | 53.66 <i>1</i> | 59-011 | 56.624 | 25-225 | 25.851 | 24.713 | 25.427 | | | 9.214 | 25.888 | 0.498 | 13.712 | 16-260 | 14.728 | 8-539 | 10.258 | 7-862 | 8.221 | 8.613 | 8.411 | | *1 | 74 | 116 | 1.00 | 116 | 62 | 116 | 114 | 114 | 109 | 109 | 99 | 109 | | | 39.405 | 65-310 | 2.720 | 67.081 | 107.793 | 06.534 | 62.211 | 61-140 | 27-853 | 28.661 | 25.919 | 28-174 | | | 9.433 | 17-911 | 0.473 | 15.985 | 17.796 | 15.553 | 8.824 | 10-168 | 8-356 | 8.895 | 9.256 | 8-447 | | ~ | 374 | 560 | 472 | 557 | 395 | 560 | 553 | 552 | 523 | 524 | 456 | 524 | | | 35. 735 | 53.134 | 2.646 | 56. 76 8 | 104.281 | 53. 839 | 59.121 | 56. 85U | 25.421 | 25-906 | 24. 886 | 25.685 | | | 6. 652 | 26.165 | 0.500 | 12. 048 | 16.070 | 13. 012 | 8.353 | 10. 041 | 7.962 | 8-203 | 8. 563 | 8.518 | | 4 | 85 | 137 | 115 | 137 | 92 | 137 | 137 | 134 | 132 | 132 | 110 | 132 | | | 31.213 | 38.766 | 2.609 | 47.839 | 103.615 | 42.066 | 55.905 | 51.851 | 22-280 | 23-311 | 22.909 | 22-130 | | | 8.748 | 12.324 | 0.508 | 41.277 | 15.494 | 10.849 | 8.016 | 9.271 | 5-934 | 6-870 | 8.002 | 6-831 | | | 2 X A | 2 5 7 | 2 2 3 | 2 * 1 | 2 T % | s z y | ZEĀ | 2 x 3 | 2 2 3 | 2 5 7 | S E 3 | ς χ ς | | | m | • | Δ. | 40 | ~ | 20 | 3 | 0 | | ~ | • | | LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VANIANCE HUNS LLUYU 1-1+C: WHITE MALES - LOW SES | UME CA SE | DE 00 ° C ~ | 0.0018 | J.u.248 | 0.0146 | 070000 | 7000°0 | 0.0437 | 0.0313 | 1100.0 | 960000 | 55 oc. 5 | J.0223 | |----------------|--
--|--|--|--|--|--|--|--|--|--|---------------------------------| | F RATIU | 0.4741 | 1.5671 | 4.5120 | 0.0593 | 1.0961 | 1.3691 | 14.5269 | 12.5610 | 3.6380 | 3.4885 | 2.3703 | 5.9809 | | MEAN SAUAKE | 34.3762 | 112.7479
66.8278 | 580.6006
124.6797 | 544.1508
83.5685 | 130-1165
76-7134 | 65.0584 | 1554.3834 | 1008.9307
45.1014 | 256.4U56
70.4789 | 295.4842 | 133.5667
50.3499 | 282.2893
47.1987 | | 3.0 | 340
343 | 2
153
762 | 213
213 | 2
745
748 | 201
203
205 | 2
758
760 | 2
764
760 | 2
713
715 | 2
210
110 | 2
614
016 | 44
444
644 | 434
434
434 | | SUM OF SHUARES | 76.7524
24C00.0098
28C64.7622 | 225,4959
50789,1594
91014,6553 | 1161.2012
55124.6249
36240.4261 | 1056-3017
62342-1229
03434-4246 | 260.2331
53929.5347
541.09.7677 | 130-1108
46125-8175
46255-9343 | 3116.7668
64263.5905
67380.3572 | 21.57.9215
60677.2741
62815.1955 | 512.8113
47573.2772
48C86.0885 | 590.9684
45487.3623
46C78.3306 | 207.1334
27949.5319
28216.6053 | 564-5785 | | SOUNCE | delkéek Gköups
mlimin Gköups
Tjial | BETHEEN GHOUPS
WITHIN GHOUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BEINEEN GKUUPS
MITHIN GROUPS
IJIAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BEINEEN GRUUPS
WITHIN GRUUPS
TUTAL | BETHEEN GRUUPS
WITHIN GROUPS
TUTAL | BETNEEN GKOUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | DETWEEN GROUPS
WITHIN GROUPS
TUTAL | dETWEEN GROUPS
WITHIM GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | | TOT AL | 349
23.673
8.984 | 763
30.511
8.182 | 276
22-065
11-468 | 749
31.595
9.209 | 706
29-337
8-767 | 761
37-480
7-801 | 767
27.888
9.379 | 716
27.034
9.373 | 678
26-947
8-428 | 617
24.784
8.649 | 499
25.513
7.527 | 437
27-654
6-948 | | m | 53
23.396
8.536 | 109
31.495
8.224 | 47
24-447
11-483 | 105
32-981
5-48 | 100
29.770
8.616 | 109
38-303
7-442 | 109
31.083
9.385 | 104
30-115
10-503 | 100
28-400
8-563 | 95
26.442
9.235 | 80
26-337
8-326 | 69
29.101
7.280 | | 7 | 241
23.959
9.290 | 522
30.546
6.378 | 196
22-362
11-681 | 514
31,951
3,358 | 494
29.581
8.896 | 521
37.412
8.015 | 527
28.188
9.426 | 489
27.145
9.255 | 467
27.026
8.639 | 420
24.845
8.724 | 339
25.693
7.592 | 299
27.880
7.024 | | 7 | 55
22 -691
8 -057 | 132
29-561
7-264 | 33
16-909
8-762 | 130
29.069
8.804 | 122
28-016
8-311 | 131
30-824
7-199 | 131
24.023
7.855 | 123
23.964
7.846 | 111
25-306
7-095 | 102
22.990
7.432 | 80
23.925
6.156 | 69
25-232
5-657 | | | 2 X 3 | 227 | 2 2 0 | Z T J | N Æ Ø | S & S | 2 5 7 | 8 E S | 5 £ 3 | ZEŻ | Z I 3 | ZES | | 7 | 25 | 92 | 27 | 8 | 53 | 90 | # | 32 | 8 | 46 | 6 | 36 | LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | SES | |--------| | LOW | | | | MALES | | 1 TE | | Ŧ | | 1-140: | | のないコ | | ONEGA SQ | 0.0426 | 0.0158 | 0.0012 | 1720-0 | 0.0505 | | 0-0294 | 0.0527 | 0.0111 | 0.0439 | 0.0271 | 0.0264 | |----------------|-----------------------|----------------------|------------------|------------------------|-----------------------|-----------------------|-----------------|-----------------------|-----------------------|-----------------------|-------------------|---------------------| | F RATIO | 17.5340 | 5.3864 | 1.2001 | 30,3665 | 20.6790 | 13.4597 | 12-1024 | 20.4273 | 3.7429 | 12.2006 | 7.8067 | 8.9059 | | MEAN SQUARE | 3632.8490
207.1886 | 996.2877
184.9622 | 2.0351
1.6958 | 11115.5128
366.0447 | 5253.5766
254.0540 | 6378.0025
473.8595 | 1860-4503 | 4484.7902
219.7446 | 1957.7307
523.0554 | 5644-4728
462-6390 | 3487.2844 | 228.7795
25.6686 | | je
Je | 2
741
743 | 2
545
545 | 2
323
325 | 2
731
733 | 2
737
739 | 2
691
693 | 2
730
732 | 2
699
769 | 2
467
489 | 7
584
7 | 486
486
486 | 2
580
562 | | SUM OF SQUARES | 7265.6979 | 1992-5753 | 4.0701 | 22231.0255 | 16507.1533 | 12756.0050 | 3760-9006 | 8977.5804 | 3515.4613 | 11248.9456 | 6574.2688 | 457.5591 | | | 153526.7416 | 100804-3736 | 547.7458 | 267578.7088 | 187237.8346 | 327436.9287 | 113426-4309 | 152722.5242 | 254727.9591 | 224379.9212 | 217096.9568 | 14899.4152 | | | 16C792.4395 | 102796-9489 | 551.8160 | 289809.7343 | 197744.9878 | 34C1 y2.y337 | 117187-3315 | 161700.1046 | 258643.4204 | 235668.8608 | 224C71.5250 | 15356.9743 | | SOURCE | BETWEEN GROUPS | BETHEN GRUUPS | BETWEEN GHOUPS | BETMEEN GROUPS | BETWEEN GROUPS | BETWEEN GROUPS | BETWEEN GROUPS | BETWEEN GRUUPS | BETWEEN GRUUPS | GETWEEN GROUPS | BETWEEN GRUUPS | BETWEEN GRÜUPS | | | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GRÜUPS | | | TOTAL | TJIAL | TOTAL | TOTAL | TOTAL | TJIAL | TOTAL | IDJAL | TOTAL | TJTAL | TJIAL | TJIAL | | TOT AL | 744 | 548 | 326 | 734 | 740 | 694 | 733 | 698 | 490 | 488 | 489 | 583 | | | 97.399 | 102.956 | 2.791 | 63-451 | 57.004 | 53.775 | 63.551 | 61.036 | 89.547 | 91-129 | 90.241 | 11.890 | | | 14.711 | 13.709 | 1.303 | 19-884 | 16.358 | 22.156 | 12.653 | 15.231 | 22.998 | 21-998 | 21.428 | 5.137 | | m | 106 | 45 | 51 | 108 | 108 | 107 | 105 | 103 | 74 | 74 | 74 | 85 | | | 103.783 | 105.718 | 3.020 | 75-315 | 04.491 | 61.589 | 67.838 | 68.243 | 95.027 | 59.486 | 97.25 <i>1</i> | 13.640 | | | 16.280 | 15.441 | 1.349 | 22-142 | 17.367 | 24.229 | 14.043 | 17.072 | 24.372 | 20.141 | 21.269 | 5.390 | | ~ | 512 | 375 | 227 | 505 | 506 | 474 | >04 | 480 | 337 | 336 | 337 | 408 | | | 97.266 | 103.237 | 2-722 | 62. 703 | 56. 885 | 53.781 | 63.603 | 60• 831 | 69.427 | 91.342 | 90.214 | 11. 870 | | | 14.254 | 13.173 | 1-326 | 18. 947 | 16. 117 | 21.7C1 | 12.469 | 14• 750 | 22.406 | 21.474 | 20.857 | 4. 929 | | 1 | 120 | 88 | 48 | 121 | 126 | 113 | 124 | 115 | 79 | 78 | 78 | 90 | | | 92.571 | 99.091 | 2.875 | 55.483 | 51.003 | 46.354 | 59.710 | 55.435 | 84.924 | 62.502 | 33.705 | 10.367 | | | 13.049 | 13.508 | 1.123 | 16.878 | 13.794 | 19.471 | 10.929 | 12.835 | 23.393 | 22.875 | 22.168 | 5.377 | | | 223 | Z E Ž | 2 7 3 | 2 5 3 | 2 2 7 | 2 T X | 2 7 7 | 2 E 3 | 2 = 3 | 223 | ::3 | 2 4 3 | | 7 | 37 | 38 | 39 | 3 | 1 4 | 7 | . | 4 | . | 4 | 7.4 | 4 | LL3YO 1-14: READING DEFILIENCY ANALYSIS OF VARIANCE RUNS | SES | |--------| | Low | | | | HALES | | I TE | | Ĭ | | . 4C : | | Ξ | | ov c. | | 3 | | UMEGA SE | 0.0100 | 0.0234 | 0.0220 | U.0258 | 0.0181 | 0.0220 | 0.0401 | 0.0244 | 0.7301 | |----------------|-----------------|----------------|-----------------|-----------------|----------------|-----------------|----------------|-----------------|-----------------| | F RATIO | 3.8952 | 1.9773 | 1.5799 | 8.7827 | 6.4292 | 7.6291 | 13.3221 | 8.4344 | 1135.0507 | | MEAN SQUARE | 133.9378 | 171.4895 | 231.9896 | 216.0821 | 211.6425 | 217.5210 | 337.0857 | 212.9168 | 23680.9361 | | | 34.3857 | 21.4973 | 30.6059 | 24.6031 | 32.9189 | 28.5120 | 25.3027 | 25.243d | 20.8533 | | ż | 2
573
575 | 540
582 | 2
581
583 | 2
584
586 | 587
589 | 2
580
586 | 7 PR 6 PR 6 | 2
581
583 | 2
310
612 | | SUM OF SQUARES | 267.4756 | 342.9790 | 463.9792 | 43c.1641 | 423.2850 | +35.0421 | 674.1714 | 425.4336 | 47351.8723 | | | 19703.0133 | 12468.4103 | 17782.0054 | 143c8.2277 | 19323.3876 | 1670s.0106 | 14352.6692 | 14000.0253 | 16399.2963 | | | 15970.8889 | 12811.3894 | 18245.9846 | 1480C.3918 | 19746.6525 | 17143.0520 | 15526.8437 | 15C92.4589 | 64261.1685 | | SOURCE | BEIWEEN GROUPS | BEIMEEN GKOUPS | BETWEEN GRUUPS | BETWEEN GKOUPS | between GROUPS | DETMEEN GROUPS | DETWEEN GROUPS | delmeen GRUUPS | BEIMEEN GROUPS | | | WITHIN GROUPS | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | Within GRUUPS | MITHIN GROUPS | | | IJTAL | TOTAL | 107AL | IJIAL | TJTAL | TOTAL | 1978L | Tutal | IDTAL | | TOTAL | 576 | 583 | 584 | 587 | 590 | 589 | 590 | 584 | 813 | | | 13.611 | 11.475 | 13.505 | 12-525 | 11.636 | 10.368 | 12.253 | 11.949 | 99-301 | | | 5.893 | 4.692 | 5.594 | 5-026 | 5.790 | 5.400 | 5.134 | 5.088 | 8-896 | | m | 85 | 38 | 90 | 85 | 87 | 86 | 88 | 89 | 116 | | | 14.788 | 12-784 | 15.489 | 14.259 | 13.241 | 11.802 | 14-273 | 13.618 | 113-897 | | | 6.040 | 5-002 | 5.925 | 6.097 | 6.538 | 0.244 | 5-685 | 5.538 | 4-947 | | 7 | 399 | 403 | 402 | 409 | 409 | 410 | 41 c | 402 | 5e U | | | 13.654 | 11.519 | 13.289 | 12-477 | 11.628 | 10-444 | 12.241 | 11.898 | 99. 423 | | | 5.756 | 4.633 | 5.491 | 4-734 | 5.544 | 5-120 | 4.907 | 4.812 | 4. 551 | | 7 | 92 | 92 | 92 | 93 | 94 | 93 | 92 | 93 | 137 | | | 12.337 | 10.033 | 12.511 | 11.151 | 10•181 | 8.710 | 10.402 | 10.570 | 86 -445 | | | 6.160 | 4.275 | 5.313 | 4.780 | 5•761 | 5.368 | 4.908 | 5.400 | 4 - 254 | | | 2 2 7 | : £ 3 | S X N | SEN | 2 2 3 | £ 2 3 | S & S | S & S | 2 E 3 | | 7 | 6 4 | 20 | 51 | 25 | 53 | 4 | 55 | 26 | 2.2 | - 16 - **78** LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Text Provided by ERIC ٥ LLOYD 1-14E: WHITE MALES - High IQ | | • | |---|--------------------------------| | ο. | 0.0 | | Ö | • | | WITH ELIMINATION CODE FOR CLAS. VAR = 999.000 | 0.0 | | K. | • | | S | • 0•0 | | CLA | . 0.0 | | FOR | 0.0 | | 2005 | • | | NTION | • 0•0 | | | • | | ਜ
ਜ | • 0•0 | | | •000-066 | | ON VAR = # 57 |
108.000, 990.000, | | CLASSIFICATIO | 91.000. | | CLA | 11 | | | LIMITS | | S | α.
- | | NO OF VARIABLES = 57 | CLAS CATEGORY UPPER LIMITS = 9 | | V AR I A | ATEGO | | 70 | AS C | | S | 5 | | | 0000 | | |---------------------|---|--------| | | 0 | • | | | 0000 | • | | | 0000 | • | | | 0.0 .0.0 .0.0 .0.0 .0.0 .0.0 .0.0 .0.0 | • | | | • • • • • | • | | | • | • | | 000 | | 999.00 | | 175. | 0 | • • | | 175.000 | 0000 | 0 | | 8 | 0000 | • • | | 100.000 | 0000 | | | | ARE | | | WITH RANGE OF | TO 57 ARE 0.0 . | | | H | S | • • | | | OR VARS 1 | | | œ
 | ₽
• | | | VAR = 1 | EXCLUDED FOR VARS 1 TO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | | | ION | | | | RESTRICTION VAR = # | CODES TO BE | | | | | | FORMAT OF DATA IS (57F6.0) MAX # OF 08S TO BE INCLUDED THIS PROBLEM = 1696 DATA TO BE READ FROM TAPE WITHOUT REWIND GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS - 17 - LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: WHITE MALES - High IQ | NMEGA SO | 0.0115 | 0.0027 | -0.0016 | 8000°0- | 0.0018 | 0.0031 | 0.0753 | -0-0014 | 0.0054 | -0.0020 | -9.0026 | 0.0003 | |----------------|--|--|--|--|--|--|--|--|---------------------------------|--|--|--| | F RATIO | 6.7398 | 2.2531 | 0.2670 | 0.6121 | 1.8508 | 2.4486 | 38.2487 | 0.3310 | 2.3864 | 0.4277 | 0.1512 | 1.0989 | | MEAN SQUARE | 142.9721
21.2131 | 7.0968
3.1498 | 0.6545 | 1.3229 | 4.9319
2.6647 | 3.6183 | 632-8392
16-5454 | 32.4062
97.9183 | 3.9865
1.6705 | 0.6907
1.6150 | 0.2063 | 1.5248 | | | 2
981
983 | 2
939
941 | 943
943
945 | 2
981
983 | 923
925 | 2
935 ·
937 | 2
912
914 | 2
981
983 | 510
512 | 2
574
576 | . 2
655
657 | 2
726
728 | | SUM OF SQUARES | 285.9442
20810.0884
21096.0325 | 14.1936
2957.6791
2971.8726 | 1.3090
2311.3137
2312.6226 | 2.6458
2120.3044
2122.9502 | 9.8638
2459.5314
2469.3952 | 7.2366
1381.6344
1388.8710 | 1265-6784
15089-3708
16355-0492 | 64.8123
96057.8340
96122.6463 | 7.9730
851.9569
859.9298 | 1,3814
926,9895
928,3709 | 0.4126
893.6923
894.1049 | 3.0495
1007.3565
1010.4060 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | RETWFEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHEN GROUPS | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 984
138.545
4.633 | 942
3.248
1.777 | 946
3.388
1.564 | 984
1.757
1.470 | 926
3.866
1.534 | 938
3-012
1-217 | 915
21.262
4.230 | 984
114.140
9.889 | 513
2.988
1.296 | 577
2.631
1.270 | 658
2.722
1.167 | 729
2.298
1.178 | | m | 161
139.615
4.594 | 152
3.112
1.811 | 152
3•362
1•542 | 361
1.646
1.247 | 149
3.644
1.673 | 150
2.873
1.276 | 144
23.299
4.188 | 161
114.720
9.762 | 84
3.238
1.304 | 90
2.733
1.339 | 106
2.774
1.267 | 2.372 .
1.197 | | ~ | 680
138.465
4.591 | 652
3.221
1.769 | 658
3-375
1-593 | 680
1.771
1.522 | 644
3.891
1.651 | 651
3.006
1.210 | 636
21.274
4.029 | 680
114.026
10.047 | 361
2.967
1.331 | 410
2.622
1.282 | 463
2.717
1.171 | 517
2-257
1-144 | | - | 143
137.720
4.688 | 138
3.529
1.760 | 136
3478
1-455 | 143
1.818
1.452 | 133
3.992
1.490 | 137
34190
1-173 | 135
19.037
4.120 | 143
114,028
9.298 | 68
2.794
1.045 | 77
2.558
1.118 | 89
2.685
1.018 | 99
2.424
1.326 | | | ZEG | SES | SE | Z # S | N E Q | N X Q | N E S | Z E Q | N M C | NES | z z S | N E N | | 7 | - | 8 | M | 4 | - 18 | - 8 | 0 | . | 9 | 10 | | 7 | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: WHITE MALES - High IQ | OMEGA SQ | 0.0977 | 0.1450 | -0.0006 | 0.0112 | 0.4354 | 0.0705 | 0.1136 | 0.0779 | 0.0714 | 0.0432 | 80 M | |----------------|--|--|---|--|---|--|--|---------------------------------------|--|--|--| | F RATIO | 35.5312 | 84.4553 | 0.7912 | 4.7770 | 381.8849 | 38.0003 | 63.3253 | 38.4502 | 35.1169 | 19-1074 | 27.2017 | | MEAN SQUARE | 1927.3989 | 35472.5520
420.0158 | 0.1171
0.1480
24018.7119
122.1886 | 817.0929 | 30063.8796 | 1698.2356 | 3377.9125
53.3423 | 2675.3985
69.5809 | 2597.4573
73.9661 | 1622.2370 | 2233.3116
82.1018 | | , | 635
637 | 2
981
983 | 735 | 663 | 2
981
983 | 2
973
975 | 2
968
970 | 883
885 | 88 82 2
4 4 4 5 | 800
802 | 883
885 | | SUM OF SQUARES | 3854.7978
34445.7116
38300.5094 | 70945.1039
412035.4560
482980.5600 | 0.2342
108.4995
108.7337
48037.4237
119867.0112 | 113403.5980
115037.7838 | 60127.7593
77229.2072
137356.9665 | 3396.4711
43483.4469
46879.9180 | 6755.8250
51635.3016
58391.1267 | 5350.7970
61432.9039
66790.7009 | 5194.9145
65386.0054
70580.9200 | 3244.4740
67920.7389
71165.2130 | 4466.6232
72495.9062
76962.5293 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS WITHIN GROUPS TOTAL BETWEEN GROUPS WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHLN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
Within Groups
Total | | I OI WE | 638
41.713
7.754 | 984
65.950
22.166 | 736
2.856
0.385
984
67.758 | 666
115.018
13.153 | 984
66.064
11.821 | 976
64.643
6.934 | 971
64.132
7.759 | 886
31.362
8.687 | 887
32.400
8.925 | 803
30.105
9.420 | 886
31.270
9.325 | | n | 99
46.040
5.547 | 161
79.888
10.290 | 114
2.886
0.346
161
81.441 | 111
117-378
11-723 | 161
80.137
9.002 | 158
67.608
7.239 | 160
68.706
7.114 | 138
35.232
8.714 | 138
36-493
9-011 | 121
33.727
9.253 | 138
34.732
9.559 | | y | 455
41.673
7.468 | 680
66.151
23.573 | 516
2.9:7
0.388
680
66.832 | 470
115.085
13.373 | 680
65.682
9.00 <i>2</i> | 675
64.742
6.649 | 671
64.070
7.447 | 620
31.544
8.541 | 621
32.469
8.713 | · 565
30• 108
9• 357 | 620
31.463
9.221 | | - | 84
36.833
8.580 | 143
49.301
11.189 | 106
2.821
0.409
143
56.755 | | 143
52.035
8.067 | 143
60.902
6.198 | 140
59.200
6.799 | 128
26.312
6.805 | 128
27.656
7.527 | 117
26.342
8.441 | 128
26-602
7-607 | | | SEC | ZES | SIN SIN | SES | Z E S | Z E S | z z S | ZES | SES | N # Q | SES | | , | 13 | . 4 | 15 | 11 | 18 | 61 | 20 | 21 | 22 | 23 | 5 | - 19 - LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: WHITE MALES - High IQ | OMEGA SQ | 0.0212 | 0.0236 | 0.0287 | 0.0234 | 9800°0 | 0.0094 | 0.0812 | 0.0686 | 0.0500 | 0.0372 | 0.0247 | 0.0302 | |----------------|----------------------|-----------------|----------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|--|---------------------|---------------------| | F RATIO | 5.3903 | 11.6472 | 8.9358 | 11.4409 | 4.4979 | 5.1701 | 40.2975 | 31.7326 | 22-1700 | 15.8797 | 9.3264 | 10.5178 | | MEAN SQUARE | 620.5432
115.1230 | 754.7294 | 1314.6071 | 906.4272
79.2266 | 362.0479
80.4924 | 235.5760
45.5654 | 3389.2887
84.1066 | 2893.0196
91.1688 | 1798.3444
81.1163 | 1469.0614
92.5120 | 676.2298
72.5071 | 646.1344
61.4323 | | Ð | 403
405 | 2
879
881 | 535
535 | 2
870
872 | 801
803 | 2
877
879 | 8886
8886 | 832
834 | 802
804
804 | 2
767
769 | 2
654
656 | 2
609
611 | | SUM OF SQUARES | 1241.0865 | 1509.4588 | 2629.2141 | 1812.8544 | 724.0958 | 471.1520 | 6778.5775 | 5786.0392 | 3596.6887 | 2938.1227 | 1352.4597 | 1292.2688 | | | 46394.5687 | 56958.6739 | 78707.7617 | 68927.1272 | 64474.3855 | 39960.8435 | 74518.4529 | 75852.4566 | 65055.2492 | 70956.7292 | 47419.6225 | 37412.2459 | | | 47635.6552 | 58468.1327 | 81336.9758 | 70739.9817 | 65198.4813 | 40431.9955 | 81297.0304 | 81638.4958 | 68651.9379 | 73894.8519 | 48772.0822 | 38704.5147 | | SOURCE | BETWEEN GROUPS | | WITHIN GROUPS | | TOTAL | TOTAL | 406 | 882 | 538 | 873 | 804 | 880 | 889 | 835 | 805 | 770 | 657 | 612 | | | 28.103 | 34.813 | 26-939 | 36.995 | 33.556 | 39.952 | 34.274 | 33.840 | 32.540 | 29.431 | 29.516 | 31.064 | | | 10.845 | 8.147 | 12-307 | 9.007 | 9.011 | 6.782 | 9.568 | 9.894 | 9.241 | 9.803 | 8.623 | 7.959 | | M | 60 | 137 | 92 | 136 | 117 | 137 | 142 | 130 | 122 | 116 | 104 | 98 | | | 31.083 | 36.825 | 30.011 | 38-463 | 34.393 | 40.839 | 38.373 |
38.315 | 35.689 | 33.490 | 31.433 | 33.398 | | | 11.463 | 8.513 | 11.967 | 9-176 | 8.787 | 6.403 | 8.678 | 9.422 | 9.425 | 9.590 | 9.450 | 8.566 | | | 287 | 617 | 385 | 609 | 564 | 616 | 617 | 582 | 565 | 540 | 456 | 427 | | | 28.192 | 34-930 | 27,055 | 37.371 | 33.860 | 40.097 | 34.549 | 33.914 | 32.793. | 29.335 | 29.743 | 31.129 | | | 10.733 | 8-133 | 12,459 | 8.852 | 9.052 | 6.851 | 9.430 | 9.779 | 9.165 | 9.980 | 8.587 | 7.927 | | - | 59 | 128 | 61 | 128 | 123 | 127 | 130 | 123 | 118 | 114 | 97 | 87 | | | 24.644 | 32.094 | -21.574 | 33.648 | 31.366 | 38.291 | 28.492 | 28•756 | 28.076 | 26.061 | 26.392 | 28.115 | | | 9.908 | 7.075 | 10.061 | 8.836 | 8.772 | 6.620 | 8.407 | 8•514 | 7.695 | 7.698 | 6.975 | 6.404 | | 7 | 25 M
SD | 26 M
SD | 27 M
SD | 28 # SD | 2 I S
6
7 | 30 M S | 2± 08
16
82 | 32 X N | 33 . M SD | 34 A B C C C C C C C C C C C C C C C C C C | 35 A S | N AE. | ERIC Full Text Provided by ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-146: WHITE MALES - High IQ | ONEGA SQ | 0.1056 | 0.0722 | -0.0006 | 0.1394 | 0.0847 | 0.1042 | 0.0574 | 0.1224 | 0.0626 | 0.1076 | 0.090.0 | 0.0531 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | 51.7583 | 27.5381 | 0.8711 | 69.0954 | 40.3984 | 49.9587 | 26.7497 | 57.4823 | 21.7222 | 38.4552 | 34.7453 | 20.7780 | | MEAN SQUARE | 7342.4308
141.8601 | 4160.1855 | 1.3566 | 21460.8049
310.5966 | 10063.3151 | 21810.9137
436.5787 | 3775.3384
141.1358 | 10493,5015 | 6099.6492
280.8025 | 8287.1277
215.5009 | 7133.6556
205.3125 | 27.9517 | | 90 | 2
857
859 | 2
679
681 | 2
416
418 | 2
836
840 | 2
848
850 | 2
839
841 | 843
845 | 2
807
809 | 2
618
623 | 2
618
620 | 2
618
620 | 2
703
705 | | SUM OF SQUARES | 14684.8616
121574.0907
136258.9523 | 8320.3710
102576.5572
110896.9282 | 2.7131
647.8167
650.5298 | 42921.6098
260279.9812
303201.5910 | 20126-6302
211239-5918
231365-2221 | 43621.8273
366289.4981
409911.3254 | 7550.6768
118977.4615
126528.1383 | 20987.0029
147319.4218
168306.4247 | 12199.2984
173535.9512
185735.2496 | 16574.2554
133179.5836
149753.8390 | 14267.3112
126883.1558
141150.4670 | 1161.5583
19650.0125
20811.5708. | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL GROUPS. | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 860
109.931
12.595 | 682
113.172
12.761 | 419
2.573
1.248 | 841
79.144
18.999 | 851
68.334
16.498 | 842
68.615
22.077 | 846
73.032
12.237 | 81 <u>0</u>
73.551
14.424 | 621
103.760
17.308 | 621
106.016
15.542 | 621
104-847
15-088 | 706
15.174
5.433 | | m | 132
117.265
11.418 | 104
117.731
12.635 | 65
2.646
1.230 | 134
92.142
16.469 | 136
76.507
14.726 | 135
79.800
21.043 | 132
77.606
11.099 | 129
81.922
12.651 | 92
111.054
12.050 | 92
114.413
9.790 | 92
112.750
9.396 | 104
17.163
5.511 | | 8 | 599
109.967
12.098 | 477
113.805
12.012 | 296
2.524
1.267 | 584
78.863
17.931 | 589
68.448
16.280 | 585
69.113
21.257 | 590
73.308
12.279 | 561
73.758
13.945 | 439
104-073
16-557 | 439
106.419
14.557 | 439
105.180
14.246 | 501
15.307
5.198 | | pud | 129
102-264
11-513 | 101
105.485
13.208 | 58
2.741
1.163 | 123
66.317
17.356 | 126
58.976
14.453 | 122
53.852
18.864 | 124
66.847
10.681 | 120
63.583
12.276 | 90
94.778
21.266 | 90
95.467
18.856 | 90
95.144
18.346 | 101
12.465
5.487 | | | N E S | N M Q | ZXS | z z S | s æ S | z z S | Z I S | Z Æ S | Z I S | z z g | SES | z z S | | 77 | 37 | 38 | 39 | 0 | 41 | 45 | 4 | \$ | 2 | 94 | 41 | 8 | 83 - 21 - ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOVD 1-146: WHITE MALES - High IQ | OMEGA SQ | 0.0420 | 0.0749 | 0.0407 | 0.0875 | 0.0528 | 0.0672 | 0.1113 | 0.0561 | 0.7331 | |----------------|-----------------|-----------------|-----------------|----------------|-----------------|-----------------|---|---------------------------------------|-----------------| | F RATIO | 16.2647 | 29.7628 | 16.2097 | 35.1941 | 20.8684 | 26.6954 | 45.4632 | 21.9267 | 1352.6288 | | MEAN SQUARE | 460.0246 | 578.5210 | 513.3053 | 886.1410 | 719.4631 | 732.7495 | 960.8185 | 600-6273 | 28934.5225 | | | 28.2836 | 19.4377 | 31.6665 | 25.1787 | 34.4762 | 27.4485 | 21.1317 | 27-3925 | 21.3913 | | JG. | 2
694
696 | 2
707
709 | 2
714
716 | 710
712 | 2
710
712 | 2
710
712 | 2
707
709 | 2
701
703 | 2
981
983 | | SUM OF SQUARES | 920.0492 | 1157.0420 | 1026.6107 | 1772,2821 | 1438.9262 | 1465,4990 | 1921.6369 | 1201-2547 | 57869.0449 | | | 19628.8030 | 13742.4580 | 22609.8859 | 17876,8456 | 24478.1061 | 19488,4309 | 14940.0828 | 19202-1772 | 20984.8901 | | | 20548.8522 | 14899.5000 | 23636.4965 | 19649,1276 | 25917.0323 | 20953,9299 | 16861.7197 | 20403-4318 | 78853.9350 | | SOURCE | BETWEEN GROUPS | | Within Groups | | Total | TOTAL | 697 | 710 | 717 | 713 | 713 | 713 | 710 | 704 | 984 | | | 17.218 | 14.500 | 17.026 | 15.902 | 14.935 | 13.578 | 15.835 | 15.528 | 100.175 | | | 5.434 | 4.584 | 5.746 | 5.253 | 6.033 | 5.425 | 4.877 | 5.387 | 8.956 | | m | 99 | 110 | 109 | 107 | 105 | 106 | 103 | 105 | 161 | | | 19.121 | 16.636 | 19.303 | 18.439 | 17.000 | 15.915 | 18.680 | 17.648 | 113.826 | | | 5.203 | 4.729 | 5.607 | 4.919 | 6.387 | 5.736 | 4.049 | 5.526 | 5.345 | | 8 | 496 | 497 | 504 | 503 | 503 | 506 | 503 | 497 | 680 | | | 17.319 | 14.549 | 16.968 | 16.024 | 15.139 | 13.678 | 15.920 | 15.628 | 99.875 | | | 5.145 | 4.472 | 5.704 | 5.032 | 5.740 | 5.124 | 4.654 | 5.079 | 4.485 | | pred | 102 | 103 | 104 | 103 | 105 | 101 | 104 | 102 | 143 | | | 14.882 | 11.981 | 14.923 | 12.670 | 11.895 | 10.624 | 12.606 | 12.863 | 86.231 | | | 6.191 | 3.686 | 5.260 | 5.051 | 5.960 | 5.267 | 4.822 | 5.657 | 4.405 | | ~ | 8 A A G S | 50 x SD | S1 # | S2 S8 | - 22 | - 24 M | S S S S C C C C C C C C C C C C C C C C | S S S S S S S S S S S S S S S S S S S | 57 H | LOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Text Provided by ERIC Þ LLOYD 1-14D: WHITE MALES - Low IQ 0.0 0000 0.0 0.0 0.0 0000 CLASSIFICATION VAR = # 57 MITH ELIMINATION CODE FOR CLAS. VAR 1.000, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.000 00000 91.000, 108.000, 990.000, 5 50.000 00000 0.0 . WITH RANGE OF FURMAT OF DATA IS (57F6.0) MAX # OF OBS TO BE INCLUDED THIS PROBLEM = 1696 DATA TO BE READ FROM TAPE WITHOUT REWIND GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | ဋ | |--------| | ğ | | • | | MALES | | WHITE | | 1-140: | | LLOYD | | OMEGA SO | 0.0168 | 0.0072 | 0.0051 | 0.0092 | 0.0068 | 0.0050 | 0.0826 | 0.0186 | -0.0041 | -0.0019 | 9,0000 | -0.0041 | |----------------|--|--|---|--|--|--|--|--
--|--|--|----------------| | F RATIO | 6.4826 | 3.2042 | 2.5346 | 3.9753 | 3.0146 | 2.4826 | 27.2403 | 7.0646 | 0.3489 | 0.6653 | 1.9371 | 0.0718 | | MEAN SQUARE | 424.3285
65.4565 | 7.5313 | 5.1460 | 14.9403
3.7583 | 5.5551 | 2.2362
0.9007 | 442.2854
16.2365 | 693.8578
98.2164 | 0.7441 | 1.0648 | 2.9849 | 0.1257 | | P. | 2
637
639 | 602
604 | 600
602
602 | 2
637
639 | 589
591 | 592
594 | 580
582 | 2
637
639 | 2
313
315 | 2
346
348 | 405
404 | 2 6
4 9 | | SUM OF SQUARES | 848.6569
41695.7790
42544.4359 | 15.0626
1414.9473
1430.0099 | 10.2920
1218.1989
1228.4909 | 29.8806
2394.0194
2423.9000 | 11.1102
1085.3695
1096.4797 | 4.4723
533.2420
537.7143 | 884.5707
9417.1446
10301.7153 | 1387.7155
62563.8329
63951.5484 | 1.4881
667.4865
668.9747 | 2.1296
553.7959
555.9255 | 5.9699
619.4721
625.4420 | 0.2515 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS.
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | RETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS | | TOTAL | 640
142.970
8.160 | 605
4.152
1.539 | 603
4.076
1.429 | 640
2.387
1.948 | 592
4.551
1.362 | 595
3.571
0.951 | 583
15.583
4.207 | 640
86.527
10.004 | 316
2.943
1.457 | 349
2.562
1.264 | 405
2.620
1.244 | 452 | | 6 | 110
145.209
9.395 | 104
3.846
1.606 | 103
34869
1-329 | 110
1.936
1.593 | 103
4.272
1.522 | 102
3.392
1.036 | 103
17.476
3.953 | 110
83.918
11.626 | 46
3.109
1.663 | 53
2.736
1.227 | 60
2.650
1.313 | 69 | | 7 | 425
142.798
8.002 | 404
4.176
1.539 | 402
4.072
1.457 | 425
2.445
1.978 | 396
4.583
1.328 | 395
3.592
0.934 | 396
15•648
4•152 | 425
86.593
10.088 | 215
2.912
1.436 | 235
2.545
1.271 | 271
2.546
1.179 | 303 | | - | 105
141.324
6.880 | 97
4.381
1.425 | 98
4.316
1.389 | 105
2.629
2.100 | 93
4.720
1.288 | 98
3.673.
0.917 | 94
13.245
3.570 | 105
88.990
6.712 | 55
2.927
1.372 | 61
2.475
1.273 | 74
2.865
1.398 | 80 | | | | Z I C | N X OS | N X N | N X S | N M CS | NES | SEC | N # O | N M Q | S # Q | <i>2</i> 2 | | 3 | - | ~ | M | * | C - 20 | 49
!
! | ~ | 60 | σ | 01 | 11 | 12 | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Foulded by ERIC | Low 1Q | |--------| | ٠ | | MALES | | WHITE | | 1-140: | | LOYD | | OMEGA SQ | 0.0911 | 0.3088 | 0.0166 | 0.2335 | -0.0012 | 0.3414 | 0.0619 | 0.1151 | 0.0482 | 0.0434 | 0.0053 | 0.0400 | |----------------|--|--|--|--|--|--|--|--|---------------------------------------|--|--|--| | F RATIO | 20.5928 | 143.9367 | 5.3611 | 98-0298 | 0.7473 | 166.8863 | 21.8462 | 42.0211 | 15.7372 | 14.1974 | 2.2656 | 13.1224 | | MEAN SQUARE | 1132,4061 | 15037.3867 | 1.3199 | 7244.3791
73.8998 | 178.2364 | 12848.1147
76.9872 | 1177-1372
53.8830 | 2804.3547 | 585.0568
37.1766 | 624.7895 | 135.2147 | 608.7173 | | <u>.</u> | 388
390 | 2
637
639 | 2
515
517 | 2
634
636 | 2
406
408 | 2
637
639 | 2
629
631 | 2
628
630 | 2
579
581 | 2
579
581 | 471
473 | 2
579
581 | | SUM OF SQUARES | 2264.8122
21336.3182
23601.1304 | 30074.7735
66548.8265
96623.6000 | 2.6397
126.7908
129.4305 | 14488.7583
46852.4725
61341.2308 | 356.4727
96828.4613
97184.9340 | 25696.2293
49040.8707
74737.1000 | 2354.2744
33892.4028
36246.6772 | 5608.7095
41910.7295
47519.4390 | 1170.1136
21525.2403
22695.3540 | 1249.5791
25480.1615
26729.7405 | 270.4293
28110.1952
28380.6245 | 1217.4347
26858.3523
28075.7869 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS -MITHIN GROUPS TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 391
30.609
7.779 | 640
41.400
12.297 | 518
2.512
0.500 | 637
49.066
9.821 | 409 | 640
44.537
10.815 | 632
54.408
7.579 | 631
50.799
8.685 | 582
22.244
6.250 | 582
22.888
6.783 | 474
21.916
7.746 | 582
22.385
6.951 | | m | 62
35.097
8.668 | 110
53.682
12.296 | 86
2.663
0.476 | 110
56.973
8.861 | 62
100-403
17-198 | 110
55-627
9-873 | 109
57.615
7.590 | 109
55.367
8.023 | 99
25.222
7.158 | 99
26.051
7.695 | 87
23.494
9.140 | 99
25.313
7.705 | | N | 259
30, 564
7, 281 | 425
41.014
10.392 | 346
2.494
0.501 | 422
49.123
8.864 | 274
97.748
15.049 | 425
44.325
9.075 | 418
54.433
7.352 | 417
51.019
8.452 | 387
21.873
5.985 | 387
22.411
6.417 | 316
21.614
7.410 | 387
22.101
6.694 | | ~ | 70
26.800
6.678 | 105
30.095
6.414 | 86
2.430
0.498 | 105
40.552
7.079 | 73
98.205
15.348 | 105
33.781
5.796 | 105
50.981
7.022 | 105
45.181
7.098 | 96
20.667
5.311 | 96
21.552
6.309 | 71
21.324
7.201 | 96
20.510
6.276 | | | N K Z | N M O | SES | ZXO | SEN | SIS | Z # S | z z S | ZEV | N M C | N E S | SES | | 7 | 23 | 7. | 51 | 16 | 11 | 18 | 9 | 20 | 2 | 22 | 23 | 54 | - 25 - LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14D: WHITE MALES - Low IQ | IMEGA SQ | 0.0103 | 0.0080 | 0.0139 | 0.0218 | 0.0078 | 0.0026 | 0.0467 | 0.0340 | 0.0104 | 0.0061 | 0.0125 | 0.0176 | |----------------|--|--|--|--|--|--|--|--|--|--|--|---------------------------------| | F RATIO | 2.1450 | 3.3497 | 1.9663 | 7.3830 | 3.1488 | 1.7517 | 15.2432 | 10.5290 | 3.5782 | 2.2892 | 3.0201 | 3.3854 | | MEAN SQUARE | 146.6201
68.3545 | 205.7923
61.4356 | 181.4747
92.2941 | 553.7202
74.9990 | 219.3884
69.6735 | 112.5232 | 782.2332
51.3170 | 590.7853
56.1105 | 178.7811 | 122.2366
53.3972 | 134.5407 | 141.7258 | | 0
F | 2
217
219 | 2
578
580 | 2
134
136 | 2
569
571 | 545
545 | 2
577
578 | 2
579
581 | 538
540 | 488
490 | 420
422 | 315 | 263 | | SUM OF SQUARES | 293.2401
14832.9190
15126.1591 | 411.5846
35509.7993
35921.3838 | 362.9494
12367.4156
12730.3650 | 1107.4404
42674.4390
43781.8794 | 438.7767
37972.0754
38410.8522 | 225.0463
37063.6623
37288.7086 | 1564.4664
29712.5233
31276.9897 | 1181-5707
30187-4755
31369-0462 | 357.5621
24382.4949
24740.0570 | 244.4732
22426.8034
22671.2766 | 269.0815
14032.7204
14301.8019 | 283.4515 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN SHOUPS
WITHIN GROUPS
TOTAL | BETWEEN CROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | | TOTAL | 220
21.386
8.311 | 581
29.179
7.870 | 137
18.139
9.675 | 572
29.163
8.756 | 548
27.484
8.380 | 580
36.022
8.025 | 582
24.093
7.337 | 541
23.519
7.622 | 491
23.910
7.106 | 423
21.603
7.330 | 318
23.292
6.717 | 266.398 | | m | 49
23.531
9.467 | 98
31.041
8.272 | 33
20,909
10,844 | 97
31.742
9.407 | 93
29.409
8.441 | 98
374337
7420 | 99
27 - 354
7 - 929 | 93
26.602
8.971 | 89
25.719. | 83
23.084
8.241 | 64
25.125
6.945 | 58
27.983 | | 7 | 141
20.837
8.243 | 387
28.76 <i>2</i>
7.928 | 87
17.494
9.156 | 381
29.050
8.652 | 368
27.201
8.408 | 386
35.650
8.378 | 388
23.812
7.046 | 361
23.127
7.104 | 329 .
23.477
6.737 | 276
21,351
7,231 | 207
22.831
6.427 | 171 | | | 30
20.467
5.923 | 96
28.958
6.967 | 17
16.059
9.337 | 94
26.957
7.851 | 87
26.621
7.979 | 96
36.177
7.035 | 95
21.842
6.795 | 87
21.851
7.327 | 73
23.658
7.006 | 64
20.766
6.271 | 47
22.830
7.349 | 37 | | - | Z E Ø | Z Z S | N M OS | z z S | N X QS | N M OS | z i, g | N M OS | N N OS | · z x G | Z X OS | 2 2 | | 7 | 22 | 56 | 17 | 28 | - 20 | 6 - | я
83 | 32 | 33 | æ
4 | 38 | 36 | LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD
1-140: WHITE MALES - Low IQ | OMEGA SO | 0.0556 | 0.0390 | 0.0815 | 0.0388 | 0.0300 | 0.0293 | 0.0866 | 0.0380 | 0.1037 | 0.0789 | 0.0325 | |----------------|--|---|--|--|---|--|--|--|---|--|--| | F RATIO | 17.8661 | 8.4858 | 25.6590 | 12.3088 | 8.7651 | 9.3345 | 25.9472 | 7.4066 | 19.6221 | 14.8404 | 7.7984 | | MEAN SQUARE | 116,3483 | 948.9653
111.8301
0.2479 | 4585.3496 | 1705.5186
138.5606 | 292.4797 | 905.1183 | 2713-4489 | 3055.9077
\$12.5925 | 7705.2849 | 5151.7340 | 147.3036 | | 70 | 570
572 | 366
368
368
209 | 211
553
555 | 557
559 | 2
500
502 | 2
550
552 | 2
523
525 | 321
323 | 2
319
321 | 320
322 | 405
404 | | SUN OF SQUARES | 4157.3742
66318.5420
70475.9162 | | 339.6368
9170.6992
98822.8187
107993.5180 | 3411.0371
77178.2754
80589.3125 | 5127.2014
146239.8682
151367.0696 | 1810.2366
53330.8882
55141.1248 | 5426.8979
54693.0793
60119.9772 | 61111.8154
132442.1846
138554.0000 | 15410.5697
1252 66. 1663
140676.7360 | 10303-4681
111085-2812
121388-7492 | 294.6071
7593.3533
7887.9605 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL
BETWEEN GROUPS
WITHIN GROUPS | TOTAL
BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS. | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | RETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS WITHIN GROUPS TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 573
88.832
11.100 | 369
94.417
10.788
212
2.920 | 1.209
556
52.579
13.949 | 560
48.813
12.007 | 503
42.463
17.365 | 553
57.103
9.995 | 526
52.087
10.701 | 324
76.889
20.711 | 322
79.345
20.934 | 323
77.972
19.416 | 405
10.010
4.419 | | m | 96
93.813
12.849 | 74
97.905
11.521
47
2.936 | 97
60.268
15.450 | 96
53.135
13.257 | 93
48.624
19.487 | 96
60.490
11.874 | 95
58.137
12.511 | 62
83.887
22.390 | 62
90.323
20.420 | 62
87.097
20.038 | 73
11.384
4.261 | | ~ | 385
88.636
10.602 | 240
94.317
10.467
138
2.891 | 372
52.019
13.173 | 374
48.722
11.682 | 336
41.720
16.398 | 366
56.902
9.460 | 350
51.551
9.891 | 213
76.671
20.250 | 212
79.042
19.595 | 213
77.643
18.412 | 270
10.004
4.378 | | | 92
84.457
9.062 | 55
90.164
9.676
27
3.037 | 87
46.402
11.577 | 90
44.578
10.373 | 74
38.095
17.052 | 91
54.341
8.989 | 81
47.309
8.541 | 49
68.980
17.636 | 48
66.500
20.006 | 48
67-646
17-698 | 62
8.419
4.302 | | | N K N
U | ZEG ZE | S E S | N X N | Z Æ S | z z S | SIN | ZEG | Z I O | Z T O | 2 2 0 | | 7 | 37 | 39 | 04 | .14 | ? | 4 | \$ | 2 | 4 | 47 | 8 | - 27 - LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-140: WHITE MALES - Low IQ | OMEGA SO | 0.0185 | 0.0291 | 0.0263 | 0.0357 | 0.0320 | 0.0622 | 0.0447 | 0,0460 | 0.7412 | |----------------|--|--|--|--|--|--|--|--|--| | F RATIO | 4.7922 | 7.1352 | 6.4518 | 8.4848 | 7.7675 | 14.5204 | 10.6707 | 10.4832 | 917.6170 | | MEAN SQUARE | 126.4300
26.3826 | 102.6644 | 137.2849
21.2785 | 138.9890
16.3810 | 157.1142
20.2270 | 233.5402
16.0836 | 181.2502
16.9858 | 191.8934 | 17879.6117 | | 2 | 400
405 | 404
409 | 401
403 | 401
403 | 2
407
409 | 405
407 | 410
412 | 403
409 | 2
637
639 | | SUM OF SQUARES | 252.8601
10553.0407
10805.9007 | 205.3287
5856.0957
6061.4244 | 274.5698
8532.6653
8807.2351 | 277.9780
6568.7844
6846.7624 | 314.2283
8232.3960
8546.6244 | 467.0804
6513.8387
6980.9191 | 362.5003
6964.1728
7326.6731 | 383.7868
7176.2645
7560.0512 | 35759.2235
12411.8375
48171.0609 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL RETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 403
11.223
5.185 | 410
9.351
3.850 | 404
10-903
4-675 | 404
10.114
4.122 | 410
9.249
4.571 | 408
7-801
4-142 | 413
9.789
4.217 | 410
9.837
4.299 | 640
100-158
8-682 | | m
: | 77
12.636
5.482 | 78
10.487
4.038 | 77
12,429
5.056 | 73
11.644
4.889 | 79
10.823
5.213 | 75
9,360
4,806 | 79
11.342
4.551 | 11.481 | 113.264 | | N | 264
11.102
5.127 | 269
9.323
3.693 | 265
10,740
4,618 | 269
9.996
3.799 | 271
9.092
4.374 | 271
7.860
3.845 | 271
9.720
4.055 | 269
9.758
4.088 | 425
99.894
4.647 | | :
: | 62
9.984
4.717 | 63
8.063
3.906 | 62
9.710
3.969 | 62
8.823
4.010 | 60
7.883
4.005 | 62
5-561
3-648 | 63
8.143
3.826 | 64
8.187
4.489 | 105
87 <u>.495</u>
3.334 | | | N R & | N X Q | N M CS | N I S | NA | N M C | N E S | SIS | N E C | | ~ | . 64 | 50 | 51 | 52 | - 28 | - 9 (|)
% | | 72 | WITH ELIMINATION CODE FOR CLASS VAR 0.0 J. 0 0.0 3.000 LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ULES CATEGORY UPPER LIMITS = 31.300, 108.000, 990.000, CLASSIFICATION VAR = # 57 1.000 MITH KANGE UF LLJYU 1-148: MHI TE FEMALES - High SES NO UF VAKIABLES = 51 RESTRICTION VAR = # 6 0.0 • 0000666 22200 000 L BE EXLLUSED FUR VARS 1 10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 FURMAT UF UMTA 15 (57F6.0) CLUES TE han # CF uss TO BE INCLUDED THIS PRUBLEM = 1670 DATA TO BE READ FROM TAPE MITHOUT REWIND GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLUYD 1-148: WHITE FEMALES - HIGH SES | UMEGA SA | U•0361 | 0.0079 | 1 200% | 4700°0- | \$£00°0 | 8800.0 | 0.0523 | -0-0001 | - 0.0028 | 960p.0 | -0.0005 | 6200-0- | |----------------|--|--|------------------------------------|--|--|--|--|---|--|--|--|--| | F RATIO | 14.6910 | 3.8907 | 3.9774 | 0.1223 | 2.4187 | 4.2581 | 20.5663 | 0.9810 | 0.4730 | 3.0038 | J.8773 | 0.2180 | | MEAN SQUARE | 339.4799
23.1080 | 10.0760 | 9.7569 | 0.1906
1.5579 | 3.4979 | 3.0579
0.7181 | 433-8260
20.9920 | 210.3100
214.3877 | 0.7494 | 4.0504 | 1.4304 | 0.3036
1.3928 | | 30 | 2
729
731 | 2
125
721 | 2
726
728 | 2
124
731 | 713
715 | 2
729
731 | 2
710
712 | 729
731 | 2
372
374 | 2
- 418
420 | 495
484 | 54 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | | SUM OF SQUARES | 674.9598
16842.7434
17524.7036 | 20.1520
1677.5788
1897.7308 | 19.5139
1780.9498
1866.4636 | 0.3811
1135.0954
1136.0765 | 6.9959
1031.1494
1038.1453 | 6.1158
523.5235
529.6393 | 867.6521
14904.2974
15771.9495 | 42 C. 62 JU
1 562 8 8 0 U B 1
1 56 7 69 2 2 8 L | 1.6988
589.3386
590.8373 | 9.3008
047.1315
656.4323 | 26U8
785.8939
788.7546 | 0.6072
757.7072
758.3144 | | SULACE | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS WITHIN GROUPS TOTAL | BETWEEN GROUPS
WITHIN GRUUPS
JUTAL | DETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
101AL | BETWEEN GKOUPS
MITHIN GROUPS
TOTAL | BEINEEN GRUUPS
Within Groups
10tal | BETWEEN GRUUPS
WITHIN GROUPS
BOTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRUUPS
WITHIN GRGUPS
TÜTAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | | TUT AL | 732
138-223
4-896 | 728
2.481
1.616 | 729
3-059
1-573 | 732
1.798
1.247 | 716
2.883
1.205 | 732
2-262
0-851 | 713
21.992
4.707 | 732
109-745
14-642 | 375
3-117
1-257 | 421
2-796
1-250 | 485
2.932
1.277 | 547
2-433
1-178 | | m | 148
139.696
4.802 | 147
2-211
1-589 | 148
2.959
1.542 | 148
1.824
1.123 | 145
2.772
1.262 | 148
2.135
0.862 | 145
23.655
4.459 | 148
1 U8. 716
16.674 | 68
3.250
1.309 | 77
3-104
1-343 | 87
3.080
1.193 | 103
2.495
1.195 | | 2 | 491
136-149
4-725 | 488
2.502
1.614 | 488
3.008
1.584 | 491
1.782
1.274 | 479
2• 471
1•203 | 491
2.263
0.858 | 478
21.914
4.561 | 491
110.275
14.263 | 259
3.093
1.276 | 289
2•713
1•224 | 336
2-844
1-328 | 374
2-412
1-161 | | - | 93
130-269
5-230 | 93
2.796
1.619 | 93
3.484
1.508 | 93
1.839
1.296 | 92
3.120
1.098 | 93
2.462
0.760
 90
19.722
4.878 | 93
108.581
13.078 | 48
3.062
1.080 | 55
2.800
1.208 | 62
2.964
1.094 | 70
2.457
1.259 | | | 2 T D | 2 x 7 | 2 5 | S E A | Z E A | 253 | z z 3 | z z y | Z E N | 2 E 3 | 2 2 3 | ZZŽ | | 7 | - | ~ | m | 4 | 'n | 9 | ~ | 20 | 6 | 01 | 11 | 71 | LLJYD 1-1+: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | SES | |----------| | High | | ŧ | | FEMALES | | <u> </u> | | AT I TE | | 1-140: | | 1.1.7.0 | | OMEGA SQ | 0.0975 | 6960°0 | -0.0011 | 02188 | 0.0027 | 0.3031 | 8090*0 | 0.0922 | 8970°0 | J.U538 | 6740.0 | 1610.0 | |----------------|--|--|--|--|---|---|--|--|--|--|--|--| | F RATIO | 24.9177 | 41.1911 | 0.7035 | 103.3512 | 1.6176 | 160.1580 | 24.4283 | 37.5512 | 17.5150 | 20-1015 | 14-9340 | 7.5428 | | MEAN SQUARE | 1422.0296
57.0690 | 18571.6672
450.8657 | 0.0774 | 15648-3982
151-4099 | 352-2627
217-7703 | 21039.5670
131.3676 | 1208.5436 | 2665.3584
70.9794 | 1202.7305
68.6686 | 1411.3620
70.2119 | 1218-5023
81-5924 | 607.2876
80.5122 | | Ą | 2440
442 | 2
729
731 | 2
551
553 | 2
728
730 | 458
460 | 2
729
731 | 2
721
723 | 2
71.7
71.9 | 2
609
671 | , 7
609
671 | 2
290
592 | 2
604
671 | | SUM UF SQUAKES | 2844.0593
25110.3426
27554.4018 | 37143.3344
328681.0864
365824.4208 | 0.1547
00.5818
60.7365 | 31296.7964
110226.4156
141523.2120 | 704.5254
99738.7805
106443.3059 | 42 C7 9 . 1340
95 766 . 9685
137 846 . 1025 | 2417.0872
35670.1504
38687.2376 | 5330.7167
50892.1944
50222.9111 | 2405.4610
45939.2756
46344.7360 | \$ 242-7239
46971-7522
45794-4762 | 2437.0046
44139.4945
50576.4992 | 1214-5751
53462-6734
55077-2445 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
MITHIN GRUUPS
TJIAL | GETNÉEN GRUUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GROUPS
WITHIN GROUPS
13 TAL | BETWEEN GROUPS
WITHIN GROUPS
1JIAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | DETMEEN GROUPS
WITHIN GROUPS
TOTAL | OETWEËN GKUUPS
WITHIN GRUUPS
TJIAL | GETWEEN GROUPS
WITHIN GROUPS
IOTAL | BETWEEN GROUPS
WITHIN GACUPS
TJIÁL | DEIMEEN GRJUPS
MITHIN DRCUPS
TilmL | | TOTAL | 443
42.725
7.953 | 732
66.046
22.371 | 554
2.903
0.331 | 731
68.033
13.924 | 461
112-254
14-777 | 732
66-184
13-732 | 724
63.746
7.25d | 720
66.461
8.843 | o72
36.371
8.488 | 672
36.381
8.614 | >93
32.88U
9.243 | 672
34.436
9.060 | | m | 77
46.481
7.306 | 148
77-270
14-029 | 104
2.933
0.320 | 147
79.014
14.669 | 84
113.929
16.542 | 148
78° 047
12° 087 | 148
05-953
7-296 | 144
09-847
8-104 | 150
39.331
7.922 | 150
39.462
7.856 | 114
35.728
9.156 | 150
30.445
8.094 | | ~ | 31.5
42.803
7.414 | 491
65•316
17•675 | 378
2.892
0.328 | 491
60.985
11.631 | 31 b
112-333
14-231 | 491
65•454
11•299 | 485
63.88U | 484
66. 653
8. 425 | 453
36.26U
8.384 | 453
36.321
8.453 | 400
32. 932
9.148 | 453
34.380
9.038 | | 1 | 56
37 • 125
8 • • • 02 | 93
52 .0 43
39 . 928 | 72
2.917
0.366 | 93
50.194
10.544 | 59
109.441
14.870 | 93
51•161
10•191 | 91
59.440
7.510 | 92
60.152
8.904 | 85
32.607
8.307 | 89
32•157
8•532 | 79
28.500
0.223 | 89
31.657
9.041 | | | 2 E A | 252 | 227 | 2 E | 217 | 2 5 0 | , , , , , , , , , , , , , , , , , , , | 2 2 3 | 2 2 3 | 4 E A | 4 £ 3 | 2 4 3 | 7.7 LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE KUNS | SES | |---------| | High | | | | FEMALES | | m | | HI TE | | 1-148: | | וריזאיי | | UNEGA SU | 0.0172 | 0.0326 | 0.0660 | 0.0328 | 0.0130 | 990000 | 0.090.0 | 0.05d4 | \$E +0 • 0 | 0.0412 | 0.0283 | O.U288 | |----------------|--|--|--|--|--|--|--|--|--|---|---------------------------------------|--| | F RATIO | 4.9786 | 12.2742 | 14.4346 | 12.2584 | 5.1493 | 3.8788 | 22.5927 | 20.4315 | 14.5494 | 13.3188 | 8.5912 | 6.2879 | | MEAN SQUARE | 558.8743
112.2556 | 756-6331 | 1778-9933 | 582.4177
47.5118 | 300.1618
58.2913 | 194-1230
50-0478 | 1778-8077
78-7338 | 1821.0062
89.1276 | 1154-6254 | 1102.3489
82.7566 | 625-8779
72-8513 | 453.6404
54.3781 | | ğ | 452 | 7 999 | 30 <i>2</i>
364 | 7 900 | 2
279
579 | 663
655 | 2
673
675 | 624
624
624 | 24 6
24 4
29 6 | 2
271
573 | 2
513
520 | 7 | | SUR UF SHUARES | 1117-7486
50739-5393
51857-2879 | 1513-2662
41054-8713
42508-1375 | 3557.9966
44614.7640
48172.7507 | 1164-0353
31452-8429
32017-6742 | 600.3236
36548.5621
37144.9857 | 388.2461
33181.6999
33569.9459 | 3557.6154
52987.8447
56545.4601 | 3642.0124
55615.6144
55257.6268 | 2317-2516
47300-d623
45016-1139 | 22.04 . 69 77
47259 . 1291
49404 . 4268 | 1251.7557
37730.9660
38740.7217 | 501.3507
26590.8999
27492.2602 | | SOURCE | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BEINEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | DETAEEN GRUIPS
WITHIN GRUUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | DETACEN GROUPS
Wilnin GROUPS
Juial | BETALEN GRUUPS
WITHIN GRUUPS
TJIAL | BETHEN GRUUPS
AITHIN GRUUPS
TOTAL | GETREEN GRUUPS
WITHIN GRUUPS | BETWEEN GROUPS
WITHIN GROUPS
FJIAL | | TUT AL | 455
32-160
10-688 | 669
38-218
7-983 | 365
33.463
11.504 | 665
42-529
7-009 | 630
39.671
7.685 | 666
40.342
7.105 | 676
38.729
9.153 | 627
37-220
9-729 | 597
35-705
9-124 | 574
52-427
9-291 | 521
33-351
8-659 | 492
35.821
7.483 | | m | 80
35-425
11-497 | 130
40-292
7-805 | 77
58-312
10-716 | 127
44.402
6.345 | 121
41.140
7.570 | 128
41.141
7.171 | 128
42.094
8.014 | 122
41.148
6.930 | 115
38-304
9-114 | 109
35-826
9-49J | 98
35.949
8.140 | 91
37.813
7.453 | | ~ | 3k9
31.661
10.652 | 452
38.259
7.914 | 254
32-933
11-319 | 450
42.56U
6.995 | 426
39.648
7.638 | 450
40.470
7.090 | 458
38.740
8.867 | 424
36-974
9-651 | 404
35-822
9-085 | 390
32-149
9-308 | 355
33.194
8.775 | 330
35.839
7.327 | | ~ | 56
30 • 339
8 • 758 | 34.908
7.585 | 34
26-441
10-258 | 88
39-670
7-122 | 83
37.651
7.702 | 68
38.500
6.84e | 90
33.869
9.998 | 81
32.593
9.052 | 76
31.269
7.702 | 75
28.933
7.193 | 68
30.426
7.779 | 65
32-938
7-506 | | 7 | 25 M | 2 & & & & & & & & & & & & & & & & & & & | 5
5
5
5
7 | 2 % T | 2 E 6 S | 7 E 7 | er à | 32
28
28
50
30 | .> ₹.0
83
83 | ል
ቁ
ፍደሳ | w
≈ ≃ 3 | 2 t A | LLUYD 1-14: KEADING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLJYD 1-148: WHITE FEMALES - High SES | ONEGA SO | 0.0492 | 0.0489 | 6700-0- | 0.0928 | 0.0791 | 0.0727 | 0.0339 | 0.1024 | 0.0300 | 0.0563 | 0.0519 | 0.0465 | |----------------|--|--|---|--|--|---|--|--|--|--|--|--| | F RATIO | 18.4048 | 14.3474 | 0.1377 | 34.5515 | 29.4150 | 26.6048 | 12.3740 | 37.4455 | 8.7403 | 15.9063 | 14.7036 | 14.1893 | | NEAN SQUARE | 3606.5912
195.9591 | 2669.5034
186.0618 | 0.2306 | 12174.5055
352.3584 | 9040.5478
307.3445 | 13400.4818
503.6861 | 1839。1376
148。6295 | 8296.4325
221.5605 | 3388.3069
387.6670 | 4920.7543
309.3582 | 4537.3209
308.5863 | 406-4794
28-6468 | | ä | 2
670
672 | 2
516
518 | 2
349
351 | 653
655 | 2
659
661 | 2
650
652 | 2 949
948
948 | 2
636
638 | 2
498
500 | 497
499 | 498
500 | 2
534
540 | | SUM OF SQUARES | 7213.1824
131292.5947
138505.7771 | 5339.0069
96007.3987
101346.9056 | 0.4613
584.3086
584.7699 | 24349.0110
230090.0378
254439.0488 | 18081.0956
202540.0539
220621.1495 | 26800 . 9636
327395.9461
354196.9096 | 3678.2752
96014.6493
99692.9245 | 16592.8650
140912.4621
157505.3271 | 6776.6138
193058.1566
195834.7705 | 5841.5085
153751.0435
163592.5520 | 9074.6418
153675.9969
162750.6387 | 812.9588
15411.9912
16224.9501 | | SOUNCE. | DEIWEEN
GRUUPS
MITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
13 TAL | BETWEEN GROUPS WITHIN GROUPS | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
IJTAL | BETWLEN GROUPS
WITHIN GROUPS
IOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GRUUPS
WITHIN GROUPS
TUTAL | BETHEEN GROUPS
WITHIN GROUPS
Tutal | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GROUPS
IJTAL | | FUTAL | 673
110-334
14-357 | 519
111.320
13.988 | 352
3.026
1.291 | 056
79.433
19.709 | 062
74.053
18.269 | 653
77.196
23.308 | 649
71.193
12.404 | 639
75.219
15.712 | 501
100-531
19-992 | 500
404-836
18-106 | 501
102-535
18-042 | 541
13-316
5-481 | | æ | 130
115.300
15.619 | 95
116.623
14.435 | 74
3.095
1.273 | 126
89.310
14.935 | 127
83.016
18.739 | 125
86.304
23.252 | 125
74.352
13.610 | 122
43.828
16.275 | 94
104.223
21.356 | 94
111.245
16.518 | 94
107.723
18.123 | 99
15-061
5-542 | | 8 | 455
110•220
13•598 | 355
111-690
13-573 | 238
3.004
1.301 | 444
78.912
19.2 84 | 447
73.342
17.365 | 443
77.293
22.499 | 440
71.320
12.098 | 435
74.553
14.906 | 340
101.265
19.096 | 340
104.912
17.416 | 340
103.035
16.988 | 371
13.364
5.369 | | 1 | 88
103-591
13-507 | 69
105-159
12-839 | 40
3.025
1.291 | 86
57.651
59.53 | 88
04 • 7 ≥ 7
16 • 541 | 85
63 .2 94
20.879 | 84
65-821
10-295 | 82
05.732
12.36¥ | 67
91.627
20.235 | 66
95.318
19.625 | 67
92.716
19.580 | 71
10.634
4.984 | | | 2 5 3 | Z X 7 | z E j | \$ Z 3 | 2 5 7 | 4 × 9 | 3.2.0 | 250 | SE S | SEV | 2 E 1 | 2 % O | | ר | 3.7 | 38 | 39 | 9 | 41 | 7.4 | £. | 4 | \$ | 9 | L 4 | 8 | LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VAMIANCE RUNS | s | |---------| | SES | | High | | • | | FEMALES | | FAI 16 | | 1-148: | | LJYU | | UMEGA SQ | 0.0417 | J.0591 | 0.0111 | 4440.0 | 6940.0 | 59¢0°0 | 1490.0 | J.Jo 23 | 0.7341 | |----------------|--|--|--|--|--|--|--|--|---| | F RATIO | 12.6942 | 18-1162 | 4.0497 | 13.7617 | 14.2268 | 17.1186 | 19.5775 | 18.7088 | 1011.5623 | | MEAN SQUARE | 372.2897
29.3275 | 422.4568
23.3193 | 140.2930 | 364.9409
26.8655 | 423.8367
30.1428 | 510.0379
29.7925 | 520.4385
20.5835 | 573.0599
30.630c | 21412-7237
21-1680 | | 90 | 2
534
530 | 245
544
544 | 541
543 | 534
536
536 | 5.55
5.35
5.37 | 2
535
537 | 2
531
533 | 2
530
532 | 2
729
731 | | SUM OF SQUARES | 744.5794
1506U.8992
164C5.4786 | 844.9135
12639.0388
13483.9523 | 2 00.5860
18741.7651
19622.3511 | 739.9817
14350.8674
15096.8492 | 857.6733
16126.4029
10984.0762 | 1 \(\pi \cdot \cdo | 1640.8770
14115.4290
15156.7060 | 1146.1199
16234.1953
1738U.3152 | 42825.44 <i>7</i> 4
15431.4529
58256.9003 | | SUURCE | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRÜUPS
WITHIN GRÜUPS
BUTAL | dETWEEN GROUPS
MITHIN GROUPS
13TAL | BETWEEN GROUPS
MITHIN GRUUPS
13TAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIM GROUPS
TUTAL | GETHEEN GROUPS
MITHIN GROUPS
IJTAL | DETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 537
14.181
5.532 | 545
16-264
4-979 | 544
14.204
5.919 | 5.37
15.017
5.307 | 538
13.675
5.624 | 538
14.256
5.620 | 534
15.732
5.343 | 533
15.803
5.716 | 732
101.228
8.927 | | m | 97
15.918
5.030 | 100
18.350
5.888 | 99
15-273
6-237 | 94
16-818
5-594 | 96
15-854
5-207 | 98
16.327
5.576 | 98
17-816
5-323 | 97
18.278
5.746 | 148
113.818
4.931 | | ~ | 372
14.199
5.535 | 375
16. 157
4. 691 | 375
14.211
5.848 | 368
14.997
5.167 | 371
13.563
5.630 | 370
14.232
5.534 | 365
15. 745
5. 095 | 365
15.685
5.567 | 491
100.124
4.566 | | ~ | 66
11.603
5.278 | 70
13.857
3.762 | 70
12.657
5.569 | 76
12.571
4.642 | 71
11.310
5.067 | 70
11.329
4.818 | 71
12.789
5.234 | 71
13.028
5.048 | 93
87.022
4.222 | | | SEN | 2 × 1) | 2 # 7 | 2 T 0 | SEN | S & 3 | 2 x 3 | 2 T S | z z G | | 7 | 4 | 50 | 15 | 25 | 53 | 54 | 55 | 56 | 21 | - 34 - LLJYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Text Provided by ERIC LLSYD 1-14C: WHITE FEMALES - LOW SES 0.0 0000 999-000 0.0 0000 WITH ELIMINATION CODE FOR CLAS. VAR = 0.0 -9.000. 0.0 0.0 0.0 5.000 20000 CLAS CATEGURY UPPER LIMITS = 91.000, 108.000, 990.000, 10 CLASSIFICATION VAR = # 57 ******* ARE MITH RANGE OF 10.00 0.00 0.00 0.00 RESTRICTION VAR # # 6 NU UF VARIABLES = 0.0 MAX # UF UBS TO BE INCLUDED THIS PRUBLEM = 1670 DATA TO BE READ FROM TAPE WITHOUT REWIND GROUP 1 = UNDERACHIEVERS FORMAT OF DATA IS (57F6.0) GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLOYO 1-14: REAUING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLUYD 1-14C: MHITE FEMALES - LOW SES | UMEGA SO | 0.0206 | 0.0027 | -0.0021 | -0.0016 | 0.0044 | 0.3027 | 0.559 | 0900°0 | 1600.0 | -0.0018 | 0.0022 | *000° | |----------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | F RATIO | 9.3220 | 2.0684 | 0.1839 | 0.3849 | 2.7455 | 2.0753 | 23.8404 | 3.3717 | 3.0261 | 0.5640 | 1.6288 | 1.1375 | | MEAN SQUARE | 295.7950
31.7310 | 2.0257 | 0.2822 | 1.3887 | 1.0001 | 0.2383
0.1148 | 523.4516
21.9565 | 714.5265
213.1078 | 6.4202
2.1216 | 1.0111 | 2.7499 | 1.7107 | | ĄO | 2
789
791 | 2
781
763 | 785
785
765 | 2
789
791 | 2
780
782 | 2
789
791 | 2
769
771 | 2
769
791 | 436
436
436 | 44.8
44.8
5 | 564
566
566 | 2
61 <i>1</i>
619 | | SUM OF SQUARES | 591,5901
25035,7420
25627,3321 | 4.0514
764.4861
768.9375 | 0.5644
1201.4100
1201.9809 | 2.1774
2840.4953
2849.2721 | 2.0003
284.1402
286.1405 | 0.4766
90.6029
91.3745 | 1 C46.9033
1684.5734
17931.4767 | 1437.0529
168142.0380
169579.0909 | 12.8404
925.0138
937.65542 | 2.0223
db3.9052
d65.9274 | 5.4444
452.2145
457.7144 | 3.4214
927.8995
931.3210 | | SOUNCE | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN CHOUPS WITHIN GRUUPS | BETHEEN GROUPS
WITHIN GACOPS
IJTAL | BETWEEN CKOUPS
WITHIN GROUPS
TOTAL | BEINEEN GKUUPS
WITHIN GKDUPS
IJIAL | BETWEEN GROUPS
#11HIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | UETNEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
MITHIN GRUUPS
TOTAL | | FOT AL | 792
139.279
5.692 | 784
4.723
0.991 | 786
4.279
1.237 | 792
2.364
1.698 | 783
5.269
0.605 | 792
4.133
0.339 | 772
19-702
4-823 | 792
101.727
14.642 | 439
3.018
1.463 | 496
2.738
1.338 |
567
2.825
1.301 | 620
2.389
1.227 | | æ | 87
141.218
6.022 | 87
4.713
0.963 | 87
4.333
1.042 | 47
2.195
1.655 | 87
5.253
0.614 | 67
4.138
0.347 | 85
22.059
5.017 | 47
59.506
10.891 | 46
2.913
1.279 | 57
2.049
1.275 | 3.000 | 70
2.271
1.329 | | 7 | 570
139-314
5-700 | 563
4.687
0.992 | 565
4.281
1.234 | 570
2.382
1.904 | 562
5.246
0.597 | 570
4.119
0.324 | 553
19.837
4.512 | 570
101-435
14-160 | 318
3.110
1.524 | 355
2-777
1-386 | 404
2-841
1-301 | 443
2.436
1.230 | | 7 | 135
137•861
5•059 | 134
4.681
0.997 | 134
4.231
1.371 | 135
2.393
1.762 | 134
5•361
0•623 | 135
4 • 165
0 • 390 | 134
17.644
5.155 | 135
104°393
14°643 | 75
2.667
1.245 | 80
2.625
1.151 | 93
2.034
1.159 | 107
2.271
1.137 | | | 2 2 3 | S E N | 25 3 | r
r
r
r | ∓.ε _y | SEO | 2 X N | 5 € 3 | . S E y | 2 X 7 | 3 £ 2 | 250 | | 7 | - | ~ | m | 4 | N. | ٠ | ~ | æ | o. | 10 | 11 | 71 | LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VAKIANCE RUNS ERIC ** Full Text Provided by ERIC LLJYU 1-14L: WHITE FEMALES - LOW SES | ONEGA SQ | 0.0420 | 0.1851 | 60003 | 9860-0 | 0.0125 | 0.2141 | 0.0246 | 0.0500 | 0-0222 | 0.0236 | 6600-0 | 0.0111 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | 12-1054 | 90.9717 | 1.0855 | 44-4108 | 4.4501 | 106.8781 | 10.8495 | 21.4231 | 9.5361 | 10.0608 | 4.4295 | 5.2056 | | MEAN SQUARE | 815.2720
67.3478 | 15443.8147 | 0.2207 | 8380.2236
188.6977 | 1063.2049 | 13585.8552 | 619.6208
57.1108 | 1855.0804
86.5924 | 684.7085
71.8019 | 756.4875 | 386.1281
87.1728 | 412.4465
79.2313 | | 90 | 504
506 | 2
789
791 | 2
655
657 | 2
789
791 | 545
544
544 | 2
789
791 | 2
779
781 | 2
773
775 | 2
748
750 | 2
748
750 | 683
685 | 2
748
750 | | SUM OF SQUARES | 1630.5439
33943.2943
35573.8383 | 3 C8 d T & 6 2 9 5
1 3 3 9 4 4 6 9 2 8
1 6 4 3 4 2 2 2 2 2 | 0.4413
133.1529
133.5942 | 16760.4472
148862.5212
165642.9684 | 2126.4097
129493.2783
131619.6881 | 27171.7105
98451.7441
125623.4545 | 1239-2417
44449-3069
45728-5486 | 3710.1608
66935.8997
7C646.0606 | 1369-4171
53707-8426
55077-2597 | 1512.9750
56243.1795
57756.1545 | 772.2562
59539.0382
60311.2945 | 824-8929
59264-9872
60089-8802 | | SOUNCE | DETWEEN GRUUPS
AITHIN GRUUPS
FUTAL | DETWEEN GRUUPS
WITHIN GROUPS
1JIAL | DETWEEN GRUUPS
MITHIN GROUPS
TJIAL | GETMEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
13TAL | BETWEEN GRUUPS
WITHIN GRUUPS
TJIAL | BETMEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | GETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
W.THIN GROUPS
TOTAL | | TOTAL | 507
34-454
8-385 | 792
56.889
14.438 | 658
2.743
0.451 | 792
60.994
14.471 | 545
105-468
15-555 | 792
58-242
12-602 | 782
60.664
7.652 | 776
62.285
9.548 | 751
30 .9 29
6.570 | 751
30.718
8.775 | 686
28.968
9.383 | 751
29-961
8-951 | | *1 | 52
43.481
0.978 | 69.184
14.251 | 67
2.791
0.445 | 87
72.414
15.161 | 58
110.759
14.871 | 47
70•425
13•030 | 87
63.345
6.928 | 86
86.337
9.572 | 33.812
8.987 | 80
34.137
9.391 | 71
31.634
9.519 | 80
32.487
10.005 | | 7 | 371
39.585
8.138 | 570
57.69d
12.994 | 473
2.746
0.449 | 576
60.746
11.217 | 401
105.207
15.418 | 570
56. 802
10. 913 | 563
60.153
7.452 | 558
62.633
9.100 | 31.001
31.474 | 540
30.720
8.628 | 495
28• 94 <i>1</i>
9• 522 | 540
29.963
8.638 | | | 84
36.405
7.155 | 135
45.540
12.343 | 118
2.695
0.462 | 135
54.681
20.719 | 86
103.116
16.015 | 135
48.030
10.958 | 132'
58.515
6.359 | 132
58.174
9.970 | 131
26.626
8.142 | 131
28.618
6.368 | 120
27.475
6.404 | 131
28°412
6°440 | | | 2 = 3 | र हा ते | . s z y | 2 F N | Z E À | 5 × 0 | ខេត្ត | 2 X 3 | 2 E 3 | S E S | S E y | 5 £ 7 | | ״ | 13 | 14 | 15 | 16 | 11 | æ | 5 | 20 | 21 | 22 | 23 | 24 | - 37 - LLJYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE HUNS > LLJYD 1-14C: WHITE FEMALES - LOW SES | UMESA SU | -0.0028 | 0*00*0 | £600°0- | 8800.0 | \$200°C | 10no•0 | 0.0272 | 0400*0 | 0.0086 | 0.0044 | 6400.0 | 9*00*0 | |----------------|--|---|--|--|--|--|---|--|--|--|--|--| | F KATIU | J. 1948 | 4.0029 | 0.1344 | 4.2721 | 2.6717 | 1.2557 | 11.4487 | 4.2612 | 4.0177 | 2.5484 | 2-3562 | 7-1194 | | PEAN SUUARE | 20.5736
105.6258 | 279.8382
69.9086 | 18.3357 | 259.6846 | 177.9490 | 76-1075 | 1040.7018
90.9016 | 410.4168
96.3159 | 318-4990 | 216-4120 | 188.2314
79.8863 | 127.0845 | | Ą | 215
512 | 745
744 | 134 | 730 | 690
640 | 742 | 2
145
747 | 2
719
721 | 2
689
691 | 2
039
641 | 2
551
553 | 44.5
48.2
48.2 | | SUM OF SUDARES | 41.1472
00206.6743
06247.4255 | 559.6763
51872.15 <i>1</i> 2
52431.8336 | 36.e715
25109.0077
25145.6791 | 51 9-3691
44 738-2736
4525 7-6428 | 355.8981
42756.6243
43112.5224 | 152-2151
44973-0144
45125-2295 | 2 C41 - 4 035
6772 1 - 6 927
69403 - 0963 | 820-336
69251-1166
70C71-9501 | 636.9980
54620.0700
55257.0679 | 432.4240
54265.3754
540 98.1994 | 376.4627
44017.3423
44393.8051 | 255.3691
28917.2810
29172.6501 | | SOUNCE | BEIMEEN GRUUPS
WITHIN GRUUPS
FUTAL | BETWEEN GROUPS WITHIN GROUPS | BETHEEN GROUPS
HITHIN GROUPS
TUTAL | delween GROUPS
althin GROUPS
Baire | DETALEN GRUUPS
BITHIN GRUUPS
TOTAL | BETALEN GRUUPS
WITHIN GRUUPS
TUTAL | BETHEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRUUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TJTAL | BETHEEN GROUPS
AITHIN GROUPS
TJTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GROUPS
HITHIY GROUPS
IJTAL | | TOTAL | 573
28-316
10-263 | 745
34.105
8.395 | 187
30-257
11-627 | 739
38-758
7-831 | 693
35-90 <i>3</i>
7-89 <i>3</i> | 745
36.071
7.788 | 748
32-671
9-607 | 722
31.992
9.858 | 692
31.348
8-942 | 642
26-947
9-238 | 554
29.408
8.960 | 463
33.027
7.760 | | M | 58
28.552
10.741 | 80
36.200
8.695 | 23
30.913
12.011 | 79
40.595
4.335 | 77
37.506
7.689 | 79
37.038
8.253 | 81
36.259
10.063 | 79
33.886
11.014 | 75
33.680
9.550 | 70
30.843
9.864 | 58
31.517
9.627 | 53
34.60 4
7.533 | | ٧ | 414
28-423
10-452 | 535
34° 099
8° 336 | 134
30,351
11,415 | 531
38-823
7-629 | 490
35-939
7-865 | 536
36-116
7-703 | 536
32-813
9-481 | 517
32-195
9-710 | 497
31.330
8.947 | 459
28.969
3.229 | 401
29.367
9.063 | 350
33.071
7.775 | | | 101
27.743
9.225 | 130
32.638
8.254 | 30
29-333
12-601 | 129
37-364
6-136 | 126
34.786
8.009 | 130
35.300
7.584 | 131
29.870
9.416 | 126
29.968
9.440 | 120
29.967
8.284 | 113
27.661
8.734 | 95
28.295
7.909 | 80
31.787
7.853 | | | 2 % 3 | s z y | 2 2 7 | ZES | × 3 3 | £ x 3 | 2 x 3 | 2 x 3 | 2 2 3 | Z E 'S | 2 x 3 | Z ¥ 3 | | 7 | 25 | 56 | 27 | 28 | 52 | 30 | m
m | 32 | 6 | 9
7 | 35 | 36 | . 38 . 100 ## LLJYU 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLUYU 1-14C: WHITE FEMALES - LOW SES | 7 | | | 7 | m | TUTAL | SOURCE | SUM UF SQUARES | 90 | MEAN SQUARE | F RATIO | DNEGA SO | |----------|-------|--------------------------|----------------------------------|-------------------------|--------------------------|--|--|--|-----------------------|---------|----------| | ~ 6 | 2 8 3 | 128
96.063
12.877 | 543
101•595
13•206 | 82
107.024
13.784 | 743
101-241
13-512 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 6241.9597
129223.9165
135465.8762 | 2
740
742 | 3120.9798
174.6269 | 17.8723 | 0.0434 | | 89 | 2 £ 3 | 101
101-238
12-176 | 411
103.844
12.049 | 59
108.356
12.97d | 571
103.849
12.284 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 1 847.1908
84123.8565
86011.0473 | 2
568
573 | 943.5954
148.1054 | 6.3711 | 0.0185 | | 5 | 2 = 3 | 69
3.420
1.333 | 294
3.310
1.292 | 41
3.171
1.358 | 404
3-314
1-304 | BETWEEN GROUPS
WITHIN GROUPS
131AL | 1.6269
083.4498
685.0767 | 401
403 | 0.6135 | 0.4773 | -0-0056 | | 0 | Λ Z Z | 122
59.730
16.179 |
527
67.520
16.858 | 80
77.575
19.656 | 729
67-320
17-664 | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | 15463.3649
211685.1646
227148.5295 | 2
726
728 | 7731.6825
291.5774 | 26.5167 | 0.0654 | | 1 4 | z = 3 | 127
57.740
15.494 | 52 d
65• 424
16• 457 | 81
69.272
17.783 | 736
64-808
16-773 | BETWEEN GROUPS
WITHIY GROUPS
TJTAL | 45 U2.9186
1 98273.0692
2 C6775.9878 | 735
735 | 4251.4593
270.4953 | 15.7173 | 0.0385 | | 7, | 2 % 0 | 120
54.542
21.602 | 522
62.983
22.379 | 80
74.587
23.614 | 722
62.866
22.975 | BETWEEN GROUPS
WITHIN GROUPS
TJTAL | 19313.9441
361264.0240
380577.9681 | 2
719
721 | 9656.9721
502.4534 | 19.2196 | 0.0480 | | 43 | 3 5 7 | 123
62.61d
11.290 | 518
65.485
11.219 | 79
67.949
12.053 | 720
65.265
11.398 | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | 1456.1174
91954.2146
93410.3319 | 2
71.7
719 | 728.0587
124.2486 | 5.6769 | 0.0128 | | ; | : 4 y | 117
59-949
13-700 | 501
66.1 d2
13.3 d2 | 80
71.612
15.671 | 698
65.759
14.045 | BETNEEN GROUPS
WITHIN GROUPS
TOTAL | 6780.4136
130707.1509
137487.5645 | 2
695
695 | 3390.2008
186.0678 | 18-0205 | 0.0465 | | . | 2 2 3 | 93
86•344
20•570 | 387
90.057
21.11 U | 50
101.357
18.678 | 536
90-593
21-110 | SEINEEN GRUUPS
Within Gruups
Jjal | 8278-7401
230150-5957
238409-5358 | 533
535 | 4139.3700
431.7647 | 9.5871 | 0.0310 | | 9 | 2 K 1 | 93
d9.d17
19.412 | 367
94.884
19.7cd | 56
104-601
17-477 | 536
95.020
19.814 | BETWEEN GROUPS WITHIN GROUPS | 7729-4208
202298-2135
20027-6343 | 533
533
535 | 3864.7104
379.5464 | 10.1824 | 0.0331 | | . | 3 £ 3 | 93
88•045
18•511 | 387
92 . 442
19.079 | 56
103.071
16.922 | 536
92.789
19.132 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 8C62.1931
: 4774.9441
195837.1772 | 533
533
533
533
533
533
533
533
533
533 | 4031.0966
352.2983 | 11.4423 | 0.0375 | | 30
Jr | 2 £ 3 | 110 10. 127 | 446
11.24 <i>7</i>
4.65d | 09
13.377
4.744 | 625
11.285
4.690 | BETHEEN GROUPS
WITHIN GROUPS
TJIAL | 450.0145
13275.2910
13725.3056 | 622
622
624 | 225.0073
21.3429 | 10.5425 | 0.0296 | ERIC Troubled by ERIC LLUYD 1-14: READING DEFICIENCY ANALYSIS UF VARIANCE RUNS LLDYD 1-14C: MHITE FEMALES - LOW SES | UMEGA SA | 1980-0 | 7600°0 | v.0014 | 0.0335 | 0.0350 | 0.0400 | 0.0353 | 0.0218 | 86898 | |----------------|--|--|--|--|--|--|--|--|--| | F RATIO | 12.7372 | 3.9127 | 1.4389 | 11.6490 | 12.2472 | 13.7815 | 12.3488 | 7.8296 | 301.7479 | | MEAN SUUARE | 340.5939
26.7400 | 75.0493
19.1810 | 38.3861
26.6778 | 250.4463 | 306.0153
24.9865 | 337.2672
24.4724 | 294.67.27
23.86.24 | 214-0431
27-3429 | 18289•4632
23•7423 | | 90 | 613
615 | 2
611
613 | 2
808
010 | 2
611
613 | 2
013
019 | 2
610
612 | 2
018
020 | 2
610
612 | 783 | | SUM UF SQUARES | 681.1877
16391.6288
17C72.8156 | 150.0967
11719.6016
11869.7003 | 76.7721
16220.0953
16296.8674 | 512.892 <i>t</i>
13450.8288
13963.7215 | 612.0305
15410.6404
16C28.6710 | 674.5344
1492 8.1839
15602.7243 | 289.3454
14740.9444
15330.2899 | 424-1662
16679-1812
17107-3475 | 30 778-9264
10355-6545
5254-5859 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GRUUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHLN GROUPS
TOTAL | GETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | DEINEEN GRUUPS
WITHIN GRUUPS
TOTAL | BETHEEN GROUPS
WITHIY GROUPS
TOTAL | SETAEEN GKUUPS
WITHIN GRUUPS
TJTAL | | TOTAL | 616
11.635
5.269 | 614
13-827
4-400 | 611
12.015
5.169 | 614
12.832
4.773 | 620
11-439
5-089 | 613
11.979
5.049 | 621
12.923
4.974 | 613
44.033
5.287 | 792
94.954
6.181 | | m | 68
13.706
5.575 | 67
14.761
4.243 | 66
12.455
4.903 | 69
14.768
5.353 | 67
13-881
5-235 | 56
13.894
5.011 | 69
15-130
4-941 | 66
14-803
5-952 | 87
112-736
-3-789 | | 7 | 441
11. 773
5. 193 | 440
13.967
4.313 | 436
12-131
5-169 | 436
12. 906
4. 584 | 445
11.411
5.009 | 437
12-178
4-903 | 441
12.957
4.811 | 439
13.116
5.177 | 570
99.6e8
4.520 | | - | 107
9.748
4.804 | 107
12-916
4-723 | 109
11-284
5-300 | 109
11.312
4.676 | 108
10.037
4.803 | 110
10.036
5.083 | 111
11.414
5.139 | 11.611 | 135
36-829
5-117 | | | 250 | 2 2 3 | 223 | 2 7 3 | 2 £ 3 | ₹×S
S | 5 × 3 | ς Σ Ω | 2 £ y | | ד | 4 | 20 | 51 | 25 | 8 | 4 | S | 56 | 25 | 102 LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Text Provided by ERIC LLOYO 1-146: WHITE FEMALES - High IQ | | · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 · 0.0 | ! | | | ; | | | | |---|-------------------------------------|---------------------|---|--------------------------------|----------|-----|-----|--------| | | | į | | - | !
i _ | _ | | | | | •: | İ | | • | 0 | • | • | | | | • | !
! | | 0.0 | o | • | 0 | | | 000 | • | | 0 | • | • | • | • | | | WITH ELIMINATION CODE FOR CLAS. VAR = 999.000 | 0.0 | ; | 0 | 0.0 , 0.0 , 0.0 , 1.000, 0.0 , | o, | ŏ | 0 | | | # | O; | | • | ŏ | oi
! | ŏ | Ö | 1 | | YAR. | •: | : | 0 | • | • | • | • | | | S | 0 | | Ö | 00. | 0 | 0 | 0.0 | | | CLA | • | | •0 | _ | 0 | 0 | 0 | i | | FOR | 0.0 | | 00. | • | • | • | • | | | ODE | 0 | | 5 | 0.0 | 0.0 | 0.0 | 0.0 | | | ن
چ | • | | • | | _ | _ | - | | | ATIC | 0 | | 0.0 | • | • | • | • | 00 | | ZIV | • | _ | | 0.0 | 0.0 | 0.0 | 0.0 | 99.000 | | EL | • | 175.000 | • | : | | | | č | | HIT | • 0 | 175 | 0.0 | • | • | • | • | • | | - | · 0.0 · 000.066 | 10 | | • | 0 | 0 | 0.0 | 0 | | 21 | 90.0 | | 6 | • | • | • | • | • | | * | • | 100.000 | 0 | 0 | 0 | 0 | 0 | 0 | | AR
H | • 000 | 100 | | • | ċ | 0.0 | Ö | 0.0 | | CLASSIFICATION VAR # | 91.000, 108.000, | ŭ. | ARE | • | • | • | • | • | | AT 10 | • | WITH RANGE OF | 57 | 0 | 0 | 0 | 0.0 | • | | F IC | 1.0 | RAN | 10 | ŏ | ŏ | ŏ | ŏ | ŏ | | ASSI | | HTH |
 | • | • | • | - | • | | C | # | * | VAR | 0. | 0.0 | 0.0 | 0.0 | 0.0 | | | IMI | ∞ | FOR | 0 | J | J | J | J | | 25 | 4 | | ED | • | • | • | • | • | | ii
S | UPPE | #
~ | 00 10 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 18LE | RY | VAI | X | | _ | | | _ | | AR I A | TEGO | T 10N | 98 C | - | • | • | • | • | | بر
د | CA | RIC | I S | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | NO OF VARIABLES = | CLAS CATEGORY UPPER LIMITS == | RESTRICTION VAR = # | CODES TO BE EXCLUDED FOR VARS 1 TO 57 ARE |
 | | | | | FORMAT OF DATA IS (57F6.0) MAX # OF OBS TO BE INCLUDED THIS PROBLEM = 1670 DATA TO BE READ FROM TAPE WITHOUT REWIND GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: WHITE FEMALES - High IQ | DMEGA SQ | 0.0465 | 0.0226 | 9900°0 | 6000-0- | 0.0227 | 0.0302 | 0.0853 | 0.0027 | 0.0013 | -0.0020 | 0.0003 | -0.0010 | |----------------|---|---|---|---|---|---|--|---|---|--|--|--| | F RATIO | 27.2634 | 12.9554 | 4.4701 | 0.5289 | 12.9037 | 16.9942 | 48.6343 | 2.4809 | 1.3669 | 0.3754 | 1.1164 | 0.6109 | | MEAN SQUARE | 440.0335 | 38.9925
3.0098 | 10.5062 | 1.1301
2.1367 | 32.1841
2.4942 | 23.0435
1.3560 | 812.4212
16.7047 | 224.1475 | 2.3797 | 0.6409 | 1.6234 | 0.8243 | | S 0F | 2
1074
1076 | 2
1029
1031 | 2
1034
1036 | 2
1074
1076 | 2
1020
1022 | 2
1024
1026 | 2
1018
1020 | 2
1074
1076 | 7. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. | 2
627
629 | _ 2
713
715 | 2
795
797 | | SUM OF SQUARES | 880.0669
17334.4623
18214.5292 | 77.9850
3097.0344
3175.0194 | 21.0124
2430.2412
2451.2536 | 2.2602
2294.8448
2297.1049 | 64.3682
2544.0619
2608.4301 | 46.0869
1388.5070
1434.5940 | 1624.8425
17005.3730
18630.2155 | 448.2949
97034.1359
97482.4308 | 4.7594
954.0138
958.7731 | 1.2817
1070,4897
1071.7714 | 3.6247
1157.5038
1161.1285 | 1.6486
1072.6885
1074.3371 | | | | | | | | | | | | | • | | | SOURCE | BETWEEN GROUPS
Within Groups
Total | BETNEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL SOURCE | 1077 BETWEEN GROUPS
137.699 WITHIN GROUPS
4.114 TOTAL | 1032 BETWEEN GROUPS
3.351 WITHIN GROUPS
1.755 TOTAL | 1037 BETWEEN GROUPS
3.456 WITHIN GROUPS
1.538 TOTAL | 9 " | Z Z | Z Z | 1021 BETWEEN
GROUPS
22.468 WITHIN GROUPS
4.274 TOTAL | EN GROUPS
N GROUPS | s i | 630 BETWEEN GROUPS
2.781 WITHIN GROUPS
1.305 TOTAL | 716 BETWEEN GROUPS
2.866 WITHIN GROUPS
1.274 TOTAL | 798 BETWEEN GROUPS
2.362 WITHIN GROUPS
1.161 TOTAL | | | - . | 55. | 9 6 | BETWEEN
15 WITHIN
51 TOTAL | BETWEEN
14 WITHIN (98 TOTAL | BETWEEN
37 WITHIN 6
82 TOTAL | 58 | 13.942 WITHIN GROUPS
9.518 TOTAL | BETWEEN GROUPS
WITHIN GROUPS | | | | | TOTAL | 164 1077
39.274 137.699
3.814 4.114 | 1032
3.351
1.755 | 1037
3.456
1.538 | 1077 BETWEEN
1.845 WITHIN
1.461 TOTAL | 1023 BETWEEN
3.914 WITHIN
1.598 TOTAL | 1027 BETWEEN
3,037 WITHIN 6
1,182 TOTAL | 1021
22.468
4.274 | 1077 BETWEEN GROUPS
9.518 TOTAL | 3.047 MIMIN GROUPS
1.320 TOTAL | 630
2.781
1.305 | 716
2.866
1.274 | 798
2.362
1.161 | | 3 TOTAL | 164 1077
139.274 137.699
3.814 4.114 | 158 1032
2.835 3.351
1.833 1.755 | 158 1037
3.228 3.456
1.576 1.538 | 164 1077 BETWEEN
1.762 1.845 WITHIN
1.218 1.461 TOTAL | 158 1023 BETWEEN
3.411 3.914 WITHIN
1.659 1.598 TOTAL | 158 1027 BETHEEN 3,037 WITHIN 6 | 157 1021
24-936 22-468
4-082 4-274 | 115.463 113.942 WITHIN GROUPS 9.962 9.518 TOTAL | 82 551 BETWEEN GROUPS
3.232 3.047 WITHIN GROUPS
1.382 1.320 TOTAL | 97 630
2.887 2.781
1.345 1.305 | 500 105 716
2.856 3.019 2.866
1.306 1.323 1.274 | 122 798
2.320 2.362
1.166 1.161 | | 2 3 TOTAL | 166 747 164 1077
36.012 137.728 139.274 137.699
3.973 4.070 3.814 4.114 | 714 158 1032
3.359 2.835 3.351
1.724 1.833 1.755 | 719 158 1037
3.444 3.228 3.456
1.546 1.576 1.538 | 747 164 1077 BETWEEN 1.845 1.762 1.845 WITHIN 1.496 1.218 1.461 TOTAL | 707 158 1023 BETWEEN
3.939 3.411 3.914 WITHIN
1.589 1.659 1.598 TOTAL | 711 158 1027 BETNEEN 3-037 WITHIN 6 1-174 1-209 1-182 TOTAL | 707 157 1021
22.376 24.936 22.468
4.055 4.082 4.274 | 166 747 164 1077 BETWEEN GROUPS 3.608 113.683 115.463 113.942 WITHIN GROUPS 8.962 9.518 TOTAL | 380 82 551 BETWEEN GROUPS
3.042 3.232 3.047 MITHIN GROUPS
1.333 1.382 1.320 TOTAL | 434 97 630
2.763 2.887 2.781
1.332 1.345 1.305 | 500 105 716
2.856 3.019 2.866
1.306 1.323 1.274 | 552 122 798
2.391 2.320 2.362 1
1.152 1.166 1.161 | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: WHITE FENALES - High IQ | OMEGA SQ | 0.1156 | 0.3918 | -0.0003 | .2555 | 0.0229 | 0.4786 | 0.0751 | 0.1333 | 0.0657 | 0.0767 | 0.0554 | 0.0386 | |----------------|--|--|---------------------------------|--|--|---|--|--|---|--|--|--| | 0 | 0 | 0 | 0- | 0 | 0 ; | 0 | • | 0 | 0 | i
i | 0 | • | | F RATIO | 43.5520 | 347.9132 | 0.8615 | 185.5979 | 9.1264 | 495.2621 | 44.2163 | 82.3773 | 35.4275 | 41.6467 | 27.0035 | 20.6791 | | HEAN SOUARE | 1845.4467 | 36279.7633
10 \$.2782 | 0.1019 | 25837.431.2
139.2118 | 1629.0122 | 33764-1981 | 1453.6576
32.8760 | 3849.7551
46.7332 | 2073.7769
58. 5 359 | 2555.7034
61.3663 | 2006.8140 | 1411-1457 | | 4 | 648
650 | 2
1074
1076 | 2
831
833 | 2
1073
1075 | 2690
692 | 2
1074
1076 | 2
1062
1064 | 2
1055
1057 | 2
976
978 | 2
976
978 | 883
885 | 2
976
978 | | SUM OF SQUARES | 3690.8934
27457.9392
31148.8326 | 12559,5266
111994,7761
184554,3027 | 0.2038
98.2806
98.4844 | 51674.8624
149374.3123
201049.1747 | 3258.0244
123160.6365
126418.6609 | 67528.3961
73219.3030
140747.6992 | 2907.3151
34914.3431
37821.6582 | 7699.5101
49303.5220
57003.0321 | 4147.5539
57130.9916
61278.5455 | 5111.4068
59893.5207
65004.9275 | 4013.6280
65621.8314
69635.4594 | 2822.2913
66602.5054
69424.7967 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS.
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 651
44.089
6.923 | 1077
67.420
13.097 | 834
2.882
0.344 | 1076
69.758
13.676 | 693
113-664
13-516 | 1077
67.983
11.437 | 1065
65.064
5.962 | 1058
68.030
7.344 | 979
36.636
7.916 | 979
36.577
8.153 | 886
33.493
8.870 | 979
35.125
8.425 | | • | 91
48.044
5.190 | 164
81.732
10.454 | 2.915
0.310 | 163
84.276
11.177 | 102
118.294
13.537 | 164
82.774
8.414 | 164
67.951
6.187 | 160
72.450
6.407 | 145
40.317
7.302 | 145
40.807
7.001 | 128
37.437
8.134 | 145
38.366
7.763 | | 2 | 462
44.325
6.421 | 747
67.680
10.184 | 576
2.882
0.339 | 747
68.817
10.041 | 485
113.371
13.143 | 747
67.803
8.208 | 739
65.099
5.511 | 736
68.235
6.707 | 677
36.712
7.726 | 677
36.600
7.963 | 615
33.546
.8.919 | 677
35.097
- 8.335 | | - | 98
39.306
7.884 | 166
52.108
10.095 | 141
2.858
0.389 | 166
59.741
18.078 | 106
110.547
14.156 | 166
54.181
8.320 | 162
61.981
6.236 | 162
62.735
7.766 | 157
32.911
7.639 | 157
32.573
7.995 | 143
29.734
7.680 | 157
32.248
8.382 | | | NES | Z E Q | ZES | Z E Ö | N E S | NEN | N R S | SES | SES | ZES | N # Q | NES | | ^ ¬ | 13 | 71 | 15 | 91 | 11 | 18 | 61 | 20 | 21 | 25 | 23 | 5 | - 43 - LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | g | |---------| | High | | • | | FEMALES | | HITE | | 1-14E: | | LOYD | | OMEGA SQ | 0.0258 | 0.0426 | 0.0511 | 0.0360 | 0.0262 | 0.0178 | 0.0838 | 0.0619 | 0.0524 | û.0443 | 0.0348 | 0.0358 | |------------------|--|--|--|--|---|--|--|--|--|--|--|--| | 5 | 6 | • | Ö | 0 | • | Ó | Ó | Ö | Ó | Ğ | Ó | Ö | | F RATIO | 10.4789 | 22.6146 | 14.0513 | 19-1131 | 13.1972 | 9.7937 | 45.8027 | 31.4650 | 25.6432 | 20.8647 | 15.2377 | 14.4548 | | HEAN SQUARE | 1056.9194 | 1237.0013
54.6992 | 1726-1681 | 886.0843 | 729.9026
55.3072 | 462.7090
47.2456 | 3060.0498
66.8093 | 2556.2439 ·
81.2408 | 1767.0149
68.9078 | 1591.4245
76.2734 | 1098.3241
72.0794 | 723.1904
50.0311 | | 1 0 | 2
714
716 | 969 | 485
484 | 2
968
970 | 2 2 3 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | 2
970
972 | 2
977
979 | 2
921
923 | 2
888
890 | 2
855
857 | 2
786
788 | 2
722
724 | | SUM OF SQUARES | 2113.8389
72014.9003
74128.7392 | 2474.00 <u>2</u> 6
53003.5642
55477.5669 | 3452.3362
59212.6452
62664.9814 | 1772.1687
44876.4492
46648.6179 | 1459.8053
49887.0831
51346.8884 | 925.4181
45828.2510
46753.6691 | 6120.0997
65272.7126
71392.8122 | 5112-4879
74822-7881
79935-2760 | 3534.0298
61190.1520
64724.1818 | 3182.8489
65213.7909
68396.6399 | 2196.6483
56654.4113
58851.0596 | 1446.3809
36122.4467
37568.8276 | | SOURCE | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN | TOTAL | 717
32.760
10.175 | 972
38.587
7.559 | 485
33.594
11.379 | 971
42.453
6.935 | 905
39.667
7.537 | 973
40.108
6.935 | 980
39.124
8.540 | 924
37.646
9.306 | 891
36.141
8.528 | 858
33.052
8.934 | 789
33-427
8-642 | 725
36.324
7.204 | | m
: | 91
36.637
10.198 | 145
41.421
7.215 | 85
38.671
10.351 | 144
44.465
7.014 | 137 | 145
41,579
7,059 | 145
43.476
7.247 | 140
41.786
8.892 | 132
39.682
8.093 | 123
36.967
8.930 | 114 [.]
36.807
7.915 | 106
38.660
6.852 | | 8 | 511
32.640
10.296 | 671
38.648
7.423 | 345
33,078
11-216 | 671
42.656
6.657 | 618
39.788
7.314 | 673
40.244
6.873 | 677
39.269
8.116 | 635
37.734
9.059 | 617
. 36.220
8.529 | 595
32.958
8.955 | 549
33.335
8.809 | 503
36.459
7.098 | | , e4
, | 115
30.226
8.682 | 156
35.692
7.446 | 55
28.982
11.336 | 156
39.724
7.249 | 150
37.273
7.742 | 155
38a142
6.700 | 158
34.513
9.161 | 149
33,383
6.930 | 142
32,507
7,437 | 140
30.014
7.515 | 126
30.770
7.510 | 116
33.603
7.161 | | | Z # S | Z E S | Z X Q | z z S | Z Z S | N X CS | Z # S | Z E S | Z E S | z z S | Z Z S | Z E S | | 77 | 52 | 92 | 27 | 28 | 62 | 30 | 31 | 32 | E | % | 35 | 36 | | | | | | | - 4 | 4 - | | | | | | | ERIC Full Start Provided by ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: WHITE FEMALES - High IQ | ONEGA SQ | 0.1145 | 0.1601 | -0.0022 | 0.1597 | 0.0916 | 0.1164 | 10.00 | 0.1556 | 0.0933 | 0.1323 | 0.1362 | 0.0809 |
----------------|--|--|--|--|--|--|--|--|--|--|--|---------------------------------------| | F RATIO | 63.6303 | 44.4929 | 0.4042 | 91.9200 | 49.6060 | 9066-69 | 31.1108 | 86.6859 | 38.9050 | 57.0912 | 59.1114 | 36.9786 | | HEAN SQUARE | 8126.0340
127.7070 | 5264.8664 | 0.6960 | 23489.0074
255.5376 | 12100.6650 | 24536.4356 | 3426.6075 | 13064.3973
150.7096 | 10309-7486 | 191.9909 | 11153.4702 | 837.9762 | | 10 | 966
968
968 | 2
779
781 | . 551
. 553 | 2
954
956 | 2
961
963 | 2
953
955 | 7 2 8 | 2
927
929 | 2
734
736 | 2
733
735 | 2
734
736 | 2
815
817 | | SUM OF SQUARES | 16252.0680
123364.9846
139617.0526 | 10529.7328
92179.4398
102709.1726 | 1.3920
948.7452
950.1372 | 46978.0149
243782.8775
290760.8924 | 24201.3300
234421.9096
258623.2396 | 49072.8712
365415.6560
414488.5272 | 6853.2150
104194.2202
111047.4352 | 26128.7946
139707.8172
165836.6118 | 20619.4972
194508.6033
215128.1004 | 21921.9848
140729.3576
162651.3424 | 22306.9404
138495.3391
160802.2795 | 1675.9524
18468.8117
20144.7641 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS. | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS . | | TOTAL | 969
111.789
12.010 | 782
112.303
11.468 | 554
3.119
1.311 | 957
80.550
17.440 | 964
75.399
16.388 | 956
78.594
20.833 | 949
72.379
10.823 | 930
76-420
13-361 | 737
102.486
17.097 | 736
107.095
14.876 | 737
104.708
14.781 | 818
13.630
4.966 | | M | 146
119-390
11-564 | 110
119-509
10-841 | 83
3.024
1.306 | 144
93.542
15.545 | 144
84.556
17.042 | 144
91.368
18.864 | 142
76.796
11.811 | 142
86.261
13.490 | 105
111-867
11-733 | 105
116.686
8.375 | 105
114.248
8.904 | 114 16.491 4.483 | | Ci | 671
111.760
11.182 | 542
112-301
10-777 | 383
3.120
1.311 | 664
80.500
16.326 | 666
75.471
15.594 | 664
78.753
19.786 | 660
72.598
10.313 | 645
76.316
12.199 | 512
102.83 <u>8</u>
16.575 | 512
107.480
13.942 | 512
105.158
13.810 | 570
13.611
4.853 | | e4 | 152
104.618
11.565 | 130
106.215
11.323 | 88
3.205
1.323 | 149
68.215
14.821 | 154
66.526
14.277 | 148
65.453
19.337 | 147
67.129
9.943 | 143
67.119
11.325 | 120
92.775
18.291 | 119
96.975
17.001 | 120
94.442
16.600 | 134
11.276
4.587 | | | Z I S | ZIN | ZES | Z E S | z z S | ZES | z z S | N M OS | Z E S | SES | ZES | Z I G | | 7 | 37 | 38 | 39 | 4 | 7 | 45 | 4 | 4 | 4 . | 9 | 4. | 4 | ERIC ** *Full Text Provided by ERIC > - 45 - LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOVD 1-14E: WHITE FEMALES - High IQ | OMEGA SO | 6.0877 | 0.0835 | 0.0285 | 0.0959 | 0.0810 | 0.0926 | 0.1216 | 0.1020 | 0.7186 | |----------------|--|--|--|--|--|--|--|--|---------------------------------| | F RATIO | 39.8743 | 38.3069 | 12.9667 | 44.1740 | 36.9691 | 42.5809 | 57,5933 | 46.9616 | 1375.9300 | | MEAN SQUARE | 1010.7830
25.3492 | 685.5373
17.8959 | 353.3749
27.2525 | 927.3966
20.9942 | 912-1546
24-6734 | 1016.8631
23.8807 | 1164.9693
20.2275 | 1188.8546
25.3155 | 30671-2402 | | 70 | 808
808
808 | 8
8
8
8
8 | 812
814 | 811
813 | 813
815 | 812
814 | 812
817 | ,
2
808
808 | 2
1074 | | SUM OF SQUARES | 2021.5660
20431.4748
22453.0408 | 1371.0745
14603.0573
15974.1319 | 706.7497
22129.0245
22835.7742 | 1854.7933
17026.2829
18881.0762 | 1824.3092
20059.5131
21883.8223 | 2033,7262
19391,1621
21424,8883 | 2329.9385
16485.4356
18815.3741 | 2377.7093
20404.2710
22781.9802 | 61342.4804 | | SOURCE | BETWEEN GROUPS
Within Groups
Total | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS | | TOTAL | 809
14.286
5.271 | 819
16.473
4.419 | 815
14.679
5.297 | 814
15-327
4-819 | 816
13-920
5-182 | 815
14.533
5.130 | 818
15.897
4.799 | 809
15.995
5.310 | 1077 | | m | 112
17.045
4.246 | 114
19.114
4.728 | 113
16.281
5.152 | 114 18-114 4-462 | 112 17.018 | 11117.378 | 114
19.053
4.269 | 112
19.286
4.826 | 164 | | ~ | 566
14.428
5.164 | 573
16.428
4.175 | 568
14,736
5,195 | 566
15.401
4.572 | 571
13.865
5.128 | 570
14.660
4.943 | 569
15.970
4.430 | 562
16.044
5.101 | 147 | | | 131
11.313
5.087 | 132
14.386
4.011 | 134
134000
5.382 | 134
12.642
4.721 | 133
11.549
4.673 | 134 | 135
12.926
4.948 | 135
13.059
4.902 | 166 | | | = = E | .z x 3 | 2 x 00 | Z E O | 2 × G | SD | Z X O | .°.
S ≖ S | 2. 2 | ERIC Full Text Provided by ERIC > LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-140: WHITE FEMALES - Low IQ • 0•0 • 0•0 • 0•0 999.000 WITH ELIMINATION CODE FOR CLAS. VAR = 0.0 0.0 0.0 0.0 99.000 CLAS CATEGORY UPPER LIMITS = 91.000, 108.000, 990.000, 50.000 10 CLASSIFICATION VAR = # 57 HITH RANGE OF NO OF VARIABLES = 57 RESTRICTION VAR = # 0000 0.0 00000 CODES TO BE EXCLUDED FOR V 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 MAX # OF 08S TO BE INCLUDED THIS PROBLEM = 1670 DATA TO BE READ FROM TAPE WITHOUT REWIND GROUP 1 = UNDERACHIEVERS FORMAT OF DATA IS (57F6.0) GROUP 2 = AVERAGE ACHIEVERS GROUP 3 - OVERACHIEVERS > LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS > | ğ | |---------| | Low | | | | FEMALES | | WHITE | | 1-140: | | LLOYD | | OMEGA SO | 9900*0 | 0.0187 | 0.0031 | 0000*0 | 0.0108 | 0.0077 | 0.1201 | 0.0246 | 0.0143 | 6000*0- | -0-0015 | -0.0046 | |----------------|--|--|--|---|--|--|--|--|--|--|--|--| | - | | • | | | J | J | • | 0 | • | O I | Ç | 0 | | F RATIO | 2.7263 | 5.7712 | 1.7801 | 1.0029 | 3.6700 | 2.9367 | 34.0326 | 7.5064 | 2.9497 | 0.3610 | 0.7409 | 0.1245 | | MEAN SQUARE | 121.7941 | 13.1157
2.2726 | 3.5086 | 3.8876
3.8764 | 5.6126
1.5293 | 2.3162
0.7887 | 518.5037
15.2355 | 578.4341
76.0453 | 6.3689
2.1592 | 1.4826 | 1.2940 | 0.2096 | | 30 | 520
522 | 2
499
501 | 500
502 | 5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5 | 484
486 | 494
496
496 | 2
481
483 | 520
522
522 | 266
268
268 | 293
293
295 | 347
349 | 2
381
383 | | SUM OF SQUARES | 243.5882
23230.3085
23473.8967 | 26.2314
1134.0336
1160.2649 | 7.0172
985.4878
992.5050 | 7.7752
2015.7315
2023.5067 | 11.2253
740.1998
751.4251 | 4.6324
389.6171
394.2495 | 1037.0074
7328.2818
8365.2893 | 1156.8681
39543.5334
40700.4015 | 12.7379
574.3476
587.0855 | 2.9652
504.5348
507.5000 | 2.5880
606.0663
608.6543 | 0.4191
641.3699
641.7891 | | SOURCE | BETWEEN GROUPS
Within Groups
Total | TOTAL | 523
141.132
6.706 | 502
4.285
1.522 | 503
4.221
1.406 | 523
2.451
1.969 | 487
4.614
1.243 | 497
3.642
0.892 | 484
17.149
4.162 | 523
88.474
8.830 | 269
3.104
1.480 | 296
2.750
1.312 | 350
2.889
1.321 | 384
2.523
1.294 | | m | 80
142.637
7.349 | 3.779
3.779
1.691 | 78
3.962
1.294 | 80
2.175
1.613 | 75
4.347
1.300 | 77
3.429
0.992 | 74
19.122
3.347 | 84.975
10.440 | 32
2.812
1.030 | 37
2.973
1.301 | 48
3.104
1.309 | 51
2.608
1.429 | | ~ | 369
140.976
6.619 | 354
4.339
1.476 | 354
4.249
1.402 | 369
2.485
2.075 | 341
4.613
1.219 | 350
3.666
0.873 | 339
17.389
3.965 | 369
89.092
8.492 | 201
3.229
1.552 | 221
2.742
1.304 | 256
2.855
1.319 | 2.511
1.302 | | | 74
140.284
6.238 | 71
4.563
1.451 | 71
4•366
1•524 | 74
2.581
1.760 | 71
4.901
1.255 | 70
3.757
0.842 | 71
13.944
4.133 | 74
89-176
7-757 | 36
2°667
1°309 | 38
2.579
1.368 | 46
2.848
1.349 | 55
2.509
1.136 | | | ZES | N E S | Z W GS | Z # C | ZZS | SES | × × Q | N E S | Z X G | N E N | z z c | N K N | | 7 | ~ | ~ | 3 | 4 | ľ | • | - | . co | • | 10 | ======================================= | 12 |
LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLNYD 1-140: WHITE FEMALES - Low IQ | OMEGA SQ | 0.0712 | 0.0579 | 0.0138 | 0.2378 | 0.0132 | 0.3999 | 0.0743 | 0.1120 | 0.0645 | 0.0536 | 0.0141 | 0.0106 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | 13.0384 | 17.0689 | 3.8003 | 82.6040 | 3.2008 | 175.2528 | 21.6947 | 33.2939 | 17.2250 | 14.3375 | 3.9555 | 3.5200 | | MEAN SQUARE | 683.6059
52.4301 | 8510.5931
498.6019 | 0.9152 | 5123.0608
62.0195 | 189,1611 | 9518.3038
54.3119 | 1021.0731
47.0655 | 2152.9217 | 799.6402
46.4231 | 686.2133
47.8615 | 254.8177 | 190.1040 | | 96 | 311
313 | 520
522 | 2
397
399 | 2
520
522 | 2
327
329 | 2
520
522 | 513
515 | 2
509
511 | 2
468
470 | 468
470 | 41 F | 468 | | SUM OF SQUARES | 1367.2117
16305.7469
17672.9586 | 17021.1863
259272.9744
276294.1606 | 1.8304
95.6 <u>6071</u>
97.4375 | 10246.1215
32250.1385
42496.2600 | 1210.9329
61855.6853
63066.6182 | 19036.6076
28242.1681
47278.7763 | 2042.1461
24144.6194
26186.7655 | 4305.8433
32914.0238
37219.8672 | 1599.2805
21726.0189
23325.2994 | 1372.4265
22399.2040
23771.6306 | 509.6355
26476.9732
26986.6087 | 380.2079
25274.9641
25655.1720 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 196 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
HITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 314
34.430
7.514 | 523
48.757
23.007 | 400
2.662
0.494 | 523
53.189
9.023 | 330
97.655
13.845 | 523
49.910
9.517 | 516
56.021
7.131 | 512
56.590
8.534 | 471
26.675
7.045 | 471
26.484
7.112 | 414
24.725
8.083 | 471
25-465
7-388 | | e | 38.632
7.390 | 80
59.737
10.756 | 56
2.804
0.483 | 80
61.263
10.310 | 41
98.780
12.352 | 80
60.425
8.920 | 80
59.012
6.781 | 79
60.886
8.379 | 68
30.471
7.869 | 68
30.118
8.047 | 59
27.271
8.444 | 68
27 <u>.397</u>
8.508 | | ~ | 232
34.496
7.049 | 369
48.371
16.860 | 291
2.656
0.490 | 369
53.092
7.421 | 248
98.306
14.233 | 369
49.984
7.194 | 364
56.209
6.900 | 360
56.906
8.084 | 336
26.509
6.672 | 336
26.271
6.719 | 297
24.488
7.942 | 336
25-342
7-184 | | | 44
30.455
8.079 | 74
38.811
44.649 | 53
2.547
0.503 | 74
44.946
7.009 | 41
92.585
11.956 | 74
38.176
6.317 | 72
51.750
6.746 | 73
50.384
7.432 | 67
23.657
6.355 | 67
23.866
6.672 | 23.345
8.027 | 67
24.119
6.894 | | | N E C | NES | Z Z S | S # S | ZXQ | N # C | Z I S | SIC | Z E C | Z # C | Z Z S | Z X Q | | | | | | | | , | | | | | | | - 49 - 111 ERIC* LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | _ | |--------------| | 20 | | 307 | | ŧ | | FEMALES | | TE | | WHITE | | 1-140: | | 7 | | ÷ | | LLOYD | | DMEGA SQ | -0.0013 | 0.0170 | 0.0053 | 0.0227 | 0.0087 | 0.0021 | 0.0593 | 0.0311 | 0.0142 | 0.0194 | 0.0134 | 0.0170 | |----------------|--|--|--|--|--|--|--|--|---|--|--|--| | F RATIO | 0.7913 | 5.0610 | 1.1932 | 6.3396 | 2.9514 | 1.4920 | 15.8246 | 8.1782 | 4.0100 | 4.7243 | 3.0347 | 3.2631 | | MEAN SQUARE | 60.9275
76.9953 | 291.5159
57.6004 | 131.7693
110.4342 | 354.4050
55.9034 | 157.5470
53.3803 | 85.8018
57.5069 | 943.2556
59.6067 | 521.6709
63.7882 | 236.7338
59.0 <u>3</u> 65 | 289.9176
61.3668 | 164.1461
54.0888 | 144.0446 | | 5
0
F | 324
324
326 | 466
468 | 2
69
71 | 2
457
459 | 441
443 | 462
464 | 2
467
469 | 445
445 | 416
418 | 2
374
376 | 2
297
299 | 2
259
261 | | SUN OF SQUARES | 121.8551
24946.4630
25068.3180 | 583.0318
26841.7699
27424.8017 | 263.5386
7619.9614
7883.5000 | 708.8101
25547.8508
26256.6609 | 315.0940
23540.7145
23855.8086 | 171.6036
26568.1813
26739.7849 | 1886.5111
27836.3506
29722.8617 | 1043.3419
28385.7653
29429.1071 | 473.4676
24559 <u>.</u> 1768
25032.6444 | 579.8353
22951.1886
23531.0239 | 328.2921
16064.3879
16392.6800 | 288.0892
11433.1169
11721.2061 | | SOURCE | BETWEEN GROUPS
Within Groups
Total GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 327
23.731
8.769 | 469
30.469
7.655 | 72
24.083
10.537 | 460
36.383
7.563 | 444
33.448
7.338 | 465
33.688
7.591 | 470
27.755
7.961 | 448
27.420
8.114 | 419
27.260
7.739 | 377
24.788
7.911 | 300
25.620
7.404 | 262
29.183
6.701 | | m | 48
24.708
10.087 | 68
32.735
7.625 | 17
27.000
11.511 | 65
39.169
7.046 | 64
35,359
6,183 | 65
35.077
7.521 | 67
31.761
8.419 | 64
30.484
9.415 | 60
29.550
8.642 | 58
27.534
8.770 | 27.955
8.339 | 40
31.375
7.156 | | N | 235
23.349
8.441 | 336
30.375
7.667 | 46
23.696
10.304 | 330
36.170
7.464 | 31.
33.274
7.456 | 333
. 33.577
7.534 | 336
27.649
7.713 | 322
27.323
7.783 | 301
274,116
7,533 | 269
24.480
7.608 | 217
25.401
7.226 | 191
.29.000
6.355 | | - | 24.705
9.011 | 65
28.585
7.128 | 20.556
9.501 | 65
34.677
7.947 | 63
32-381
7-581 | 67
32.896
7.884 | 67
24.284
6.995 | 62
24758
7.419 | 58
25.638
7.407 | 50
23.260
7.894 | 39
24.205
6.876 | 31
27 ₄ 484.
7.663 | | 7 | 25 # SD | 26 H S0 | 27 N
SD | 28
S S S | 29 R | 30. A | 31 H
SD | 32 M
S0 | 33 N
SD | 34 R
S
SD | 35 X SD | 36 AK | | | | | | | | | | | | | | • • • | ERIC Full Text Provided by ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | - Low IQ | |----------| | FEMALES | | WHITE | | 1-140: | | LLOYD | | OMEGA SQ | 0.0751 | 0.0251 | -0.0057 | •0912 | • 1062 | 0.0789 | 0.0087 | 0.0836 | • 0051 | •0355 | 0.0235 | 0.0167 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | 5 | • | • | 0 | 1 | 0 | 0 | 0 | 0.0 | 0 | 0. |
 -
 - | 0.0 | | F RATIO | 20-1180 | 5.1524 | 0.4086 | 23.7281 | 28.2651 | 19.9758 | 2.9648 | 20.6135 | 1.7995 | 6.7892 | 4.7940 | 4.1017 | | HEAN SQUARE | 2007.7451
99.7985 | 573.7923
111.3649 | 0.6543 | 3643.5153
153.5525 | 4834.7555
171.0501 | 6378.8205 | 267.7875
90.3236 | 2162.8721 | 726.9000
403.9375 | 2256.8440
332.4185 | 1454.6006 | 67.1707
16.3764 | | . | 2
468
470 | 2
319
321 | 207 | 450
452 | 456
458 | 440
442 | ##3
##3 | 427 | 312
314 | 312
314 | 312
314 | 363
363
365 | | SUM OF SQUARES | 4015.4902
46705.6817
50721.1720 | 1147.5845
35525.3875
36672.9720 | 1.3087
331.4580
332.7667 | 7287.0306
69098.6251
76385.6556 | 9669.5109
77998.8595
87668.3704 | 12757-6411
140504-3770
153262-0181 | 535.5750
40013.3421
40548.9170 | 4325.7442
44803.0209
49128.7651 | 1453.7999
126028.4858
127482.2857 | 4513.6879
103714.5661
108228.2540 | 2909.2011
94667.3195
97576.5206 | 134.3415
5944.6339
6078.9754 | | SOURCE | BETWEEN GROUPS
Within Groups
Total RETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 471
92.465
10.388 | 322
94.991
10.689 | 210
3.367
1.262 | 453
56.788
13.000 | 459
55.963
13.835 | 443
49.905
18.621 | 446
58.693
9.546 | 430
56.672
10.701 | 315
78.619
20.149 | 315
82.317
18.565 | 315
80.384
17.628 | 366
8-992
4-081 | | m | 69
96.884
10.974 | 45
99.178
11.936 | 34
3•382
1•231 | 65
64.862
14.310 | 67
63.015
15.984 | 64
59.531
19.690 | 65
60.831
9.390 | 63
62.524
12.191 | 46
83.630
22.287 | 46
91.109
18.700 | 46
87.478
18.939 | 55
10.073
4.113 | | 2 | 334
92.817
10.105 | 236
94.691
10.380 | 154
3-331
1-268 | 325
56-517
11-991 | 327
56.468
12.908 | 318
49.997
18.000 | 317
58.644
9.513 | 308
56.636
9.762 | 228
78.022
19.317 | 228
A1.298
17.747 | 228
79.535
16.626 | 262
8.989
4.123 | | |
68
86.250
8.207 | 41
92.122
9.920 | 22
3.591
1.297 | 63
49.857
12.319 | 65
46.154
10.322 | 61
39.328
14.926 | 64
56.766
9.575 | 59
50.610
10.450 | 41
76.317
21.777 | 41
78-122
20-300 | 41
77-146
19-863 | 49
7.796
3.518 | | | NES | z z S | ZES | z z g | z z S | Z X S | ZES | Z E S | SES | X # & | SEN | ZIS | | ~ | 37 | 15 | 39 | 0 | 41 | 45 | 4
6 | 3 | 4
& | 46 | 17 | 6 | | | | | | | - 51 | | 142 | | | | | | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-140: WHITE FEMALES - Low IQ | OMEGA SQ | 0.0198 | 0.0185 | -0.0015 | 0.0194 | 0.0302 | 0.0491 | 0.0245 | 0.0144 | 0.7175 | |----------------|--|--|--|--|--|--|--|--|--| | 8 | • | ó | 0 | • | • | ° ° | • | • | • | | F RATIO | 4.6477 | 4.3774 | 0.7254 | 4.4950 | 6.5817 | 10.1487 | 5.4464 | 3.5932 | 665.0022 | | MEAN SQUARE | 95.0879
20.4592 | 62.8914 | 14.3058
19.7218 | 74.7039
16.6193 | 130.3156
19.7998 | 190.8931
18.8096 | 102.4634
18.8131 | 68.0689
18.9438 | 12360.8808
18.5877 | | i. | 2
359
361 | 2
355
357 | 2
355
357 | 2
351
353 | 2
356
358 | 2
351
353 | 2
351
353 | 2
351
353 | 520
522
522 | | SUM OF SQUARES | 190.1757
7344.8629
7535.0387 | 125.7828
5100.3653
5226.1480 | 28.6117
7001.2459
7029.8575 | 149.4077
5833.3719
5982.7797 | 260.6312
7048.7281
7309.3593 | 381.7863
6602.1601
6983.9463 | 204.9267
6603.4038
6808.3305 | 136.1377
6649.2860
6785.4237 | 24721.7615
9665.6190
34387.3805 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 362
9.436
4.569 | 358
11.439
3.826 | 358
9.243
4.438 | 354
10.373
4.117 | 359
9.125
4.519 | 354
9.460
4.448 | 354
10.331
4.392 | 354
10-407
4-384 | 523
99.966
8.116 | | . | 54
10.852
5.000 | 54
12.315
4.184 | 53
9.491
4.466 | 55
11.673
5.186 | 52
10.942
4.646 | 54
11.370
4.877 | 54
11.944
4.109 | 52
11.788
5.244 | 80
113.000
4.531 | | | 262
9.378
4.470 | 257
11.498
3.710 | 258
9.322
4.520 | 253
10.289
3.884 | 259
9.008
4.399 | 252 9.425 | 251
10.199
4.270 | 256
10.277
4.142 | 369
- 99 <u>,593</u>
4,394 | | i | 46
8.109
4.228 | 47
10.106
3.755 | 47
8.532
3.939 | 46
9.283
3.588 | 48
7.792
4.510 | 48
7.500.
4.177 | 49
9.224
4.896 | 46
9.565
4.400 | 74
87.730
3.586 | | | Z E S | N E S | Z Z S | SES | Z Z Q | SS | Z Z S | N | NES | | . ¬ | 6, | 50 | 51 | . 52 | - 53 | \$.
\$. | 55 | 26 | 5.7 | | | | | | | . J | - | | | | ERIC Foulded by ERIC LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RONS LLUYD 1-140: MEGKU MALES - HIGH SES | au of Vanlables = 57 | | CLASSIFICATION VAR | IN VAR | 15 # = | | пн е | MITH ELIMINATION CODE FOR CLAS. VAR = | low (| CODE + | بن
بن | AS. V. | # | 000*666 | 2 | | | |--|-------------|---------------------------|--------|----------|-------|-------|---------------------------------------|-------|--------|----------|-------------------|---|---------|-----|---|-----| | LLAS GATEGURY UPPER LIMITS = | LIMIIS = | 41.000. 108.000, 990.000, | 108.0 | 30, 343 | •000• | 0.0 | • | 3 | ŏ | • | • 0.0 • 0.0 • 0.0 | | 0.0 | 0.0 | • | 0.0 | | ALSTRICTION VAR = # | 0 | #ITH KANGE OF | 7 | 1.000 10 | 10 | 4.300 | 00 | | | | | | | | | | | THE STATE OF EXCLUSED FOR VARS 1 TO 57 ARE | F.C.P. VARS | 1 10 57 | ARE | 0.0 | • | 0.0 | 0.0 | • | 6 | -9.000. | • | • | 0.0 | • | | | | • 0.0 | 0.0 | 0.0 | - | . 0.0 | | • | 0.0 | • | 2.0 | • | 1.000 | • | . 0.0 | 0.0 | • | | | . 0.0 | 0.0 | | | . 0.0 | 3.0 | • | 0.0 | • | 0.0 | | 0.0 | | • 0.0 | 0.0 | • | | | 0.0 | 0.0 | 0.0 | | • 0•0 | 3.0 | • | 0.0 | • | 0.0 | | 0.0 | • | • 0•0 | 0.0 | • | | | | 0.0 | | | • 0.0 | 0.0 | • | 0.0 | • | 0.0 | • | 0.0 | • | 0.0 | 0.0 | • | | | • 0.0 | 0.0 | | | ٠ ٥٠٠ | 0.0 | • | 000.666 | | | | | | | | | | | FUNMAT OF DATA 15 (57F6.0) | 7F6.03 | | | | | | | | | | | | | | | | GROUP 1 = UNDERACHIEVERS MAX # OF CAS TO BE INCLUDED THIS PRUBLEM = 296 DATA TO BE READ FROM TAPE WITHOUT REWIND GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VAKIANCE KUNS ERIC Full Text Provided by ERIC LLUYD 1-140: NEGRO MALES - High SES | As a second | \$400°0- | -0.0051 | 96[P° P- | £200°C- | 9700-0- | 0500-0- | 0-1403 | -0.0215 | U.0192 | 2860.0 | -0-0264 | 0.0172 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F KAT 10 | 0.7379 | 0.7428 | 0.1637 | 0.7619 | 4178-0 | 0.7760 | 4.0195 | 0.0513 | 1.5284 | 2.8545 | 0.0724 | 1.0748 | | MEAN SEUAKE | 61.3889
83.1936 | 1.4593 | 0.3355
2.0498 | 5.9139 | 0.e338
0.e338 | 0.2944 | 191.4102 | 12.5694 | 3.9296
2.57 10 | 4.6210
1.6210 | u.1176
1.6262 | 4.0667 | | Ą | 7 ~ 7 | 8 8 5
5 4 | 7 7 0 | 7 r r | 7 5 6 8 | 2 6 9 6 9 | מו פג
א א זע | 2 to 80 | 5
18
53 | 3 7 5
5 | 7 % L | 72.0 | | SUM OF SEUARES | 122.7778
7237.8444
7300.6222 | 2-9185
124-7210
157-0395 | 0.0711
172.1795
172.8506 | 11.6278
075.2944
687.1222 | 1-0675 | 0.5883
33.0111
33.0000 | 382.8325
1981.1210
2363.9535 | 25.1389
2138.4167
21301.5556 | 7.4591
131.1224
138.9815 | 9.2542
92.3958
101.6500 | 0.2356
112.2088
112.4444 | 4.1334
179.6848
187.8182 | | SUULLE | belacen GROUPS
althin GROUPS
Total | BEINERN GRUUPS
HITHIN GRUUPS
IJTAL | GETWEEN GROUPS
WITHIR GROUPS
10TAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | GETHELN CRUUPS
WITHIN GROUPS
JUTAL | DETACEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GRUUPS
WITHIN GRUUPS
TOTAL | BEIMÉEN GROUPS
WITHIN GRUUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
BJIAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRUUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | | TOTAL | 90
143.644
9.094 | 86
4-802
1-362 | 87
4.782
1.418 | 90
4.744
2.779 | 88
4.920
0.973 | 90
3.733
0.614 | 86
18.023
5.274 | 90
88.778
15.492 | 54
3.019
1.619 | 60
2.650
1.313 | 72
2.778
1.258 | 77
2-364
1-572 | | m | 18
145.444
7.840 | 10
4-612
1-424 | 17
4.765
1.393 | 18
5-444
2-955 | 17
5-176
1-286 | 18
3.778
0.548 | 17
22. 05 9
6. 13 9 | 18
d8.833
19.651 | 13
3-615
1-557 | 13
3.385
1.557 | 15
2-667
1-345 | 16
2-937
1-692 | | ~ | 50
143.567
9.792 | 59
4.712
1.403 | 58
4-741
1-505 | 60
4-617
2-762 | 59
4. 831
0. 950 | 60
3.683
0.670 | 57
17-368
4-542 | 60
88-500
15-287 | 33
2-727
1-420 | 37
2.405
1.142 | 46
2.804
1.240 | 50
2.140
1.414 | | (| 12
141.353
6.972 | 5.273
5.273
1.609 | 12
5-000
1-044 | 12
4.333
2.640 | 12
5-000
0-426 | 12
3.917
0.289 | 12
15-417
4-502 | 12
90.083
9.462 | 8.250
2.315 | 2.600
1.350 | 11
2.818
1.328 | 2.545
1.968 | | | 2 t 3 | ; E J | 2 2 3 | S & Y | z z 'n | Z E Å | 4 2 3 | .ε.π.Ω
Ω | N X Z | N E W | 2 ± 3 | 2 X 0 | | 7 | - | ~ | m | 4 | v | • | ~ | æ | • | • | | | LLUYD 1-14: READING DEFILIENCY ANALYSIS OF VARIANCE RUNS | SES | |--------| | - High | | MALES | | NEGRO | | 1-148: | | LLU YD | | OMEGA SQ | -0°0019 | 1665-0 | -0.0234 | U.3328 | 0.000s | 0-4445 | 0.1364 | 0.1748 | 0.0623 | 0.0519 | 0.0119 | 0.0323 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | . 8004 | 28.8949 | 0.1424 | 21.9503 | 1.0125 | 37.0010 | 8.0295 | 10.4236 | 3.7218 | 3.2435 | 1.4706 | 2.3688 | | MEAN SQUARE | 59.3042
74.0976 | 3449.2328
119.3715 | 0.0279
0.1963 | 1758.5973
80.1174 | 215.6426 | 3130.4889 | 407.0946
50.6997 | 708.9552 | 184.2000 | 170.9583
52.7087 | 102.5436 | 144.7488 | | 5 | 4 8
50 | 63
83 | 2
74
74 | 8
83
83 | 5 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 2 2
2 4 2 2 | 2 | 2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 2
79
81 | 2
79
81 | 2
75
77 | 2
73
81 | | SUM OF SQUARES | 118-6084
3556-6857
3675-2941 | 6494.4656
9669.0940
10507.2595 | 0.0559
14.1308
14.1867 | 3517.1946
6449.5077
10006.7024 | 431.2852
11074.6421
11505.9273 | 6260.9778
7360.6778
13621.6556 | 814-1891
4360-1704
5174-3596 | 1417-9103
5849-2133
7267-1236 | 364.4000
3909.85e1
4278.2561 | 341.9167
4163.9857
4505.9024 | 205.0872
5229.0308
5434.7179 | 2 89.4977
4627.4779
5116.9756 | | SOURCE | BETWEEN GROUPS
WITHIN
GROUPS
TOTAL | GETWEEN GROUPS
WITHIN GROUPS
INTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRUUPS
WITHIN GRUUPS
TJTAL | bETWEEN GROUPS
WITHIN GROUPS
IJTAL | BETWEEN GROUPS
WITHIN GROUPS
IGTAL | BETWEEN GKOUPS
WITHIN GROUPS
IJIAL | GETWEEN GROUPS
WITHIN GRUUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
FITHIN GROUPS
FJIAL | BETMEEN GROUPS
WITHIN GROUPS
TUTAL | | TOT AL | 51
32.682
8.574 | 84
43.298
14.128 | 75
2.747
0.438 | 51.440
10.980 | 55
95.764
14.597 | 90
46.122
12.371 | 89
53.798
7.668 | 89
51.820
9.087 | 82
26•183
7-268 | 82
26•415
7•458 | 78
26.235
8.401 | 82
25.293
7.5°8 | | 4 | 9
36.000
5.701 | 17
60.176
14.081 | 15
2.800
0.414 | 17
62.059
10.311 | 12
90.500
13.290 | 18
60.611
10.199 | 18
59.056
d.585 | 18
59.500
8.104 | 17
30-176
6-885 | 17
30-176
7-06÷ | 16
29.375
8.740 | 17
28.588
9.131 | | N | 35
31.971
5.170 | 56
40.571
10.217 | 52
2.731
0.448 | 56
50. 554
8. 774 | 38
97.368
14.255 | 60
44.567
9.269 | 59
53.203
7.056 | 59
50.373
8.047 | 54
25-426
7-273 | 54
25.778
7.523 | 52
25.481
8.670 | 54
24•852
7•542 | | | 7
53.429
8.541 | 11
31.091
8.089 | 2.750
0.463 | 11
39-545
7-448 | 5
96.200
20.080 | 12
32-167
0-900 | 12
48.833
4.469 | 12
47.417
9.424 | 11
23.72 <i>f</i>
5.901 | 11
23.727
6.051 | 10
24.900
5.216 | 11.2.364 | | | 253 | S E J | 2 E 7 | 2 % 0 | 253 | \$ E V | 2 % 7 | 2 5 7 | 7 8 3 | 2 % ሽ | 257 | 2 4 3 | | 7 | 13 | 4 | 51 | 91 | 11 | 30
~1 | 61 | 20 | 21 | 27 | 23 | 54 | - 55 - 117 LLJYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-148: NEGRO MALES - High SES | UMEGA SA | -0.1222 | -0-00-5 | 0.1154 | 0.0770 | 8900-0- | 9070.0 | 0.0510 | 0.0722 | 0.0174 | £060.0 | 0.0103 | e
8
8
8
8
9 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | + KATIO | 0.1289 | 0.8984 | 2-1742 | 4.4187 | 0.7240 | 2.7334 | 3.2283 | 3.9962 | 1.0120 | 4*0579 | 1.3027 | 7967 | | MEAN SQUARE | 62.90176 | 23.6409 | 65-6250
30-1833 | 309.09¢1
69.4509 | 53.5493
73.9657 | 187.0754 | 211.8973 | 300.7676
75.2629 | 120.7103 | 150.1722
37.4318 | 61.2739
41.3371 | 86.2321
42.3390 | | A. | 7 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 7 8
80 | 2
15
17 | 2
79
81 | 2.5
2.6
18 | 2
7.9
81 | 80
82
82 | 742 | 7 9 79 | 2 2 C | 252 | 44
51 | | SUM OF SQUARES | 16-2153
817-7222
833-9375 | 57.2818
2.86.7182
2544.0000 | 131.2500
452.7500
584.0000 | 614-1801
5526-1248
6144-3049 | 107.0986
5843.2916
5950.3902 | 374.1508
5436.7273
5780.8780 | 423.7945
5250.9283
5674.7229 | 601.5352
5569.4518
6170.9370 | 253.4207
5187.9127
5441.3333 | 301.5444
2171.0458
2472.5902 | 122.5477
2507.0385
2709.5862 | 172.4642
2014.5121
2247.0769 | | SOLACE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GROUPS
IJTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETMEEN GROUPS
Mithin Groups
Tutal | BEIMEEN GROUPS
WITHIN GROUPS
1JIAL | BETWEEN GRUUPS
WITHIN GRUUPS
IJTAL | BETWEEN GROUPS
WITHIN CKOUPS
TOTAL | BETWEEN GROUPS
#ITHIN GROUPS
IJIAL | DETACEN CALLOVA
MITHIA GALLOVA
ILIAL | | TOTAL | 16
31.563
7.456 | 81
32.556
5.639 | 16
27.667
5.861 | 82
30.451
8.710 | 82
32.537
8.571 | 82
32.805
8.448 | 83
28-518
8-319 | 77
27.987
9.011 | 69
27-333
6-945 | 61
27.918
6.419 | 58
28.276
6.895 | 52
27.692
0.638 | | m | 6
32.833
10.206 | 17
33.941
5.562 | 4
31.750
3.500 | 17
34.647
10.185 | 17
32.882
10.049 | 17
36.000
9.539 | 17
32.882
9.532 | 16
32.875
10.984 | 15
30.867
9.109 | 13
31.231
8.358 | 13
30.462
5.782 | 12
30.750
6.355 | | 8 | 9
30. 889
6. 092 | 53
32.415
5.885 | 13
27.000
5.888 | 54
30.222
7.871 | 54
33.019
7.849 | 54
32.667
7.979 | 55
27.618
7.899 | 50
27.360
7.787 | 46
26.565
3.953 | 42
27.619
5.590 | 39
28.026
7.372 | 34
27-118
6-879 | | -1 | 10.00
30.000
0.0 | 11
31.091
4.369 | 20.000
0.0 | 11
25.091
7.635 | 11
29.636
9.811 | 11
28.545
7.594 | 11
26.273
6.544 | 11
23.727
8.878 | 8
25-125
7-736 | 6
22.833
3.125 | 6
25-167
4-916 | 6
24.833
3.710 | | | 2 E Å | 2 E 13 | 2 2 7 | 257 | 277 | 2 Z Å | ZΣŻ | 257 | 2 × 7 | 3.£ V
3 | 227 | 2 11 0 | | 7 | 25 | 56 | 27 | 28 | 5 2 | 30 | 31 | 3.5 | 33 | W
4 | 3 | 36 | Þ LLJYD 1-14: KEADING DEFILIENLY ANALYSIS OF VARIANCE KUNS LLUYD 1-148: NEGRU MALES - High SES > | UNEGA SQ | 0.0109 | 4500.0 | 0.0607 | 0-0346 | 0.1606 | 0.0075 | -0.0042 | 2940-0 | 1990- 0- | -0-1023 | -0.08 8 4 | -0-0165 | |----------------|--|------------------------------------|--|--|--|--|--|--|--|--|--|--| | F RATIO | 1.4340 | 1.1674 | 2.3896 | 2.2199 | 7.6982 | 1.2106 | 0.8625 | 2.6367 | 0.5933 | 0.3965 | 0.4719 | 0.4655 | | MEAN SAUARE | 219.9802 | 155.8081 | 4.477.
1.8738 | 240.6949 | 1125.6907 | 274.9097
227.0812 | 78.2921
90.7722 | 205.9351
78.1023 | 292,5099
493,0057 | 135.9560 | 165.7319
351.2229 | 7.7940 | | Ą | 2 9 £ | 56 2
56 2 | ~97 | 7 50 62 | 69
69 | 53
55 | 65
64
64 | 61
63 | 2
10
12 | 7 0 7 | 10
17
17
17 | 5 63 5 | | SUM OF SQUARES | 439,9605
11658,7990
12098,7595 | 311.6163
7474.1126
7785.7288 | 8.9553
74.951 <i>1</i>
83.9070 | 441.3898
7047.8308
7529.2206 | 2251.3814
9797.2043
12C48.5857 | 549.8194
12035.3056
12545.1250 | 156.5843
5627.8773
5784.4615 | 411.8702
4764.2391
5176.1094 | 585.0198
4930.0571
5515.0769 | 271.9121
3428.8571
3700.7692 | 331.4637
3512.2266
3843.6923 | 15.5880
1054.8968
1070.4848 | | SOURCE | BETWEEN GRUUPS
WITHIN GRJUPS
TJIAL | BETWEEN GROUPS WITHIN GROUPS TOTAL | BETHEEN GRUUPS
Within Groups
Tutal | BETWEEN GROUPS
WITHIN GROUPS
TJTAL | BETWEEN GRUUPS
WITHIN GRUUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
IJTAL | BETWEEN GROUPS
WITHIN GRUUPS
IJIAL | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHLEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GRUUPS
IUTAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | | 101 AL | 79
82-203
12-454 | 59
88•068
11•586 | 43
2.953
1.413 | 68
45.662
10.601 | 70
48.146
13.214 | 56
41-375
15-127 | 65
51.846
9.507 | 64
46.672
9.064 | 13
54.385
21.438 | 13
59-308
17-561 | 13
56.846
17.897 | 66
7.485
4.058 | | m | 17
80.647
12.124 | 11
91.618
14.675 | 10
3-400
1-350 | 13
50,923
11,543 | 14
59.500
18.296 | 12
47.250
16.515 | 11
54.364
14.507 | 12
51.833
11.077 | 5
59.400
20.671 | 5
05.000
16.947 | 5
61.400
17.569 | 14
7.929
4.779 | | ~ | 50
81.200
12.793 | 42
47.810
10.671 | 29
2.055
1.370 | 48
44. 725
9.985 | 46
45.565
10.151 | 36
40.111
14.880 | 44
51.886
8.079 | 46
45.696
8.017 | 7
53.857
23.109 | 7
56.143
16.225 | 7
55.286
19.423 | 45
7.556
3.805 | | 1 | 12
40.063
10.410 | 6
83.000
11.419 | 4
4.000
1.414 | 7
42.286
11.280 | 10
44.400
9.477 | 8
38.250
13.551 | 10
48.900
8.925 | 6
43.833
9.760 | 1
33.000
0.0 | 1
53.000
0.0 | 1
43.000
0.0 | 7 6-143 | | | 2 % 7 | ₹ ₹ Λ
Э | .z = 0 | 5 d. J | 227 | 5 2 A | ₹ Σ Λ
Э | 2 5 7 | 253 | 2 E J | 2 5 7 | 2 T 0 | | 7 | 2.5 | ъ
С | 3° | J
• | , | N | e, | 4 | Š | 9 | ٠, | 50 | - 57 · **119** LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC FRUIT TEXT PROVIDED BY ERIC | SES | |--------| | High | | | | MALES | | NEGRU | | 1-1+0: | | CLO YO | | UMEGA SA | 0.0543 | 0.0213 | 7•00•0 | 0.1604 | 0.1470 | 0.0053 | 0.0952 | 3050°°- | 0.7141 | |----------------|---|---|--|---|---|---|---|---|--| | F KATIO | 7.9507 | 1.7409 | 1.2106 | 7.3050 | 0.6855 | 1.1735 | 4.4212 | 0.0519 | 113.3905 | | MEAN
SUUARE | 54.8818
19.9554 | 26.2097
15.0549 | 13.0630
10.7905 | 61.7929
8.4590 | 105-2512 | 14.0327 | 57.3069
12.9618 | 0.6972 | 3247.4000
24.6391 | | A. | `~ ¢° 7 | 7 50 0 | ~ * 9 9 | 69 | . 4 6
6 4 5 | 2 7 9 9 | 7 7 7 | 2
01
03 | 8 4 4 8 4 8 4 8 4 9 4 9 4 9 4 9 9 9 9 9 | | SUM OF SQUARES | 117-7635
1297-1041
1414-8676 | 52.4195
978.5058
1C3C.9853 | 26.1259
690.5905
716.7164 | 123-5857
532-9143
656-5000 | 210-5023
991-8159
1202-3182 | 28.0654
741.3807
709.4462 | 114.6138
803.6323
918.2462 | 1.3943
819.0432
820.4375 | 64 94.8000
2491.6000
8986.4000 | | | | | | | | | | | | | SUURCE | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
IJIAL | BETWEEN GROUPS
WITHIN GROUPS
IJTAL | BETNEEN GRUUPS
MITHIN GRUUPS
TOTAL | SETNEEN GROUPS
WITHIN GROUPS
TOTAL | BETNEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GRUUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | | TOTAL SUUNCE | 68 BEINGEN GRUUPS
7.456 WITHIN GRUUPS
4.595 TUIAL | 68 BETWEEN GROUPS
8.015 WITHIN GROUPS
3.923 IJIAL | 67 BETWEEN GROUPS
6.522 WITHIN GROUPS
3.295 TUTAL | 66 BETNEEN GRUUPS
7.500 WITHIN GRUUPS
3.178 TOTAL | 66 dEINEEN GROUPS
6.682 WITHIN GROUPS
4.301 TJIAL | 65 BETNEEN GROUPS
4-908 MITHIN GROUPS
3-467 TOTAL | 65 BETWEEN GRUUPS
7-492 WITHIN GRUUPS
3-788 TUTAL | 64 BETWEEN GROUPS
6-344 WITHIN GROUPS
3-609 TOTAL | 90 BETWEEN GROUPS
100.800 WITHIN GROUPS
10.048 TUTAL | | | | | | | | | | | | | | 68
7.456
4.595 | 68
6.015
3.923 | 67
6.522
3.295 | 66
7.500
3.178 | 66
6.682
4.301 | 65
4-908
3-467 | 65
7.492
3.788 | 64
6.344
3.609 | 90
100.600
10.048 | | 5 TOTAL | 15 68
7.933 7.456
4.773 4.595 | 15 68
9.600 8.015
4.641 3.923 | 15 67
5-933 6-522
2-840 3-295 | 14 66
9.246 7.500
3.672 3.178 | 14 66
8.857 6.682
4.400 4.301 | 13 65
5.769 4.908
4.065 3.467 | 15 65
8.667 7.492
5.010 3.788 | 14 64
6.429 6.344
3.458 3.609 | 115.333 100.600
7.507 10.048 | | 5 TOTAL | 46 15 68
7.891 7.933 7.456
4.547 4.173 4.595 | 46 15 68
7.674 9.600 8.015
3.745 4.641 3.923 | 45 15 67
6.933 5.933 6.522
3.394 2.840 3.295 | 45 14 66
7.467 9.246 7.500
2.070 3.672 3.178 | 45 14 66
6.711 8.857 6.682
4.065 4.400 4.301 | 45 13 65
4.911 5.769 4.908
3.390 4.065 3.467 | 43 15 65
7.674 8.667 7.492
3.235 5.010 3.788 | 43 14 64
6.256 6.429 6.344
3.632 3.458 3.609 | 60 18 90
99.367 115.333 100.800
4.067 7.507 10.048 | LLJYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLJYD 1-14C: NEGRU MALES - LOW SES ERIC Fruit Text Provided by ERIC > | | • | | • • • • | |-------------------------------------|------------------------------|-----------------------|---| | | • | | 9090 | | 9 | Ö | | • | | 999-000 | 0.0 . 0.0 | | • | | | 0.0 | | | | | • | | | | VAS | 0 | | 000 | | LAS. | . 0.0 . 0.0 | | 00000 | | S X | • | | 000 | | E F.C | 9 | | *000.6 | | HITH ELIMINATION CUDE FOR CLAS. VAR | . 0.0 . 0.0 | | 3000 | | ICN | 9 | | 0 | | INAI | • | | 0.0 | | EL IM | • | 5.000 | • 9 | | HL | 9 | 'n | • | | ž | • | | 20000 | | | 00-0 | 10 | • | | ,
| 166 | 5 . 000 | • | | VAR = # 57 | 91.000, 108.000, 990.000, | | 00000 | | | 108. | ı. | AR
• | | TIO | 5 | Ö | 200000 | | CLASSIFICATION | 1.00 | ALTH RANGE OF | 50000 | | A S S I. | • | Ŧ. | <u>-</u> | | CL | #
S | .\$ | % < A < 0.00 | | | IMI | • | 30000 | | 5.7 | 4 | Te: | | | N . | up p. | 11
24 | XCLUDED F
0.0
0.0
0.0
0.0 | | NJ OF VARIABLES = 57 | CLAS CATEGURY UPPER LIMITS # | KESTRICTION VAR = # 6 | CUDES TO BE EXCLUDED FOR VARS 1 TO 57 ARE 0.0 . | | IARI | TEG | TIU | 20000 | | 0F / | s Ct | THIC | 400000
00000 | | 2 | CLA | KES | G | | | | | | FURMAT OF DATA IS (57F6.0) MAX * UF ODS TO SE INCLUDED THIS PROBLEM = 296 DATA TO SE READ FROM TAPE WITHOUT REWIND GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLUYD I-14: READING DEFICIENCY ANALYSIS OF VARIANCE HUNS LLUYU 1-141: NEGRÜ MALES - LOW SES | UMEGA ST | 0.0200 | -0.0126 | -0-0141 | 9600.0- | £400°0- | 0.0 | 0.0353 | -3.0125 | £610°0- | 1400.0- | -0-0173 | 1010.0- | |----------------|--|--|--|--|--|--|---|--|--|--|--|--| | F RATIO | 2.3169 | 0.2366 | 0.1611 | J. 3835 | 0.0977 | 0.0 | 3.3228 | 0.2019 | 0.0175 | 3.1572 | 0.0734 | 1110.0 | | MEAN SOUARE | 327.5080
141.3590 | 0.1529
0.6464 | 0.1565
0.9717 | 2.4544
7.4435 | 0.2468
J.3565 | 0.0 | 74.7182
22.4868 | 48.9020
242.2415 | 0.0378
2.1029 | 2.0625 | 0.1370 | 0.1775
2.4775 | | Ą | 2
120
128 | 2
123
122 | 2
113
120 | 2
120
123 | 5
121
123 | 222 | 2 2 2 4 2 5 4 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 | 2
120
123 | 2
101
103 | 2
101
103 | 2 20 2 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 3 3 | 2
11.5
11.2 | | SUM OF SEUARES | 655-0160
17811-2320
18466-2481 | 3.3059
77.5043
77.8699 | 0.3130
114.0622
114.9752 | 5.7097
957.48572
943.5969 | 0.4975
•3.1390
43.6371 | 220 | 144.4304
2730-3549
2937.7353 | 47.4439
3052.4240
505.0.2326 | 0.0757
218.4532
218.5288 | 4°1249
275°0962
279°2212 | 0.2741
147.4045
143.2355 | 0.4553
4625275
772.0050 | | SOURCE | SEIMEEN
GRUUPS
WITHIN GRUUPS
TOTAL | DETMEEN GKOUPS
WITHIN GROUPS
TJIAL | GEINEEN GROUPS
mithiv Groups
Ijtal | DEINEEN GKOUPS
WITHIN GROUPS
TOTAL | BEINELN GRUUPS
MITHIN GRUUPS
IUTAL | Stimeen Ghuups
Wilhim Ghuups
Total | BEINEEN BKUUPS
WITHIN GKÜUPS
131AL | SEINEEN GROUPS
MITHIN GROUPS
TOTÁL | BEINEEN OKJUPS
MITHIN OKLUPS
IJIAL | DEINEUN GKUUPS
MITHIN GKUUPS
IJIAL | DETABLE GROUPS
WITHLA GRUUPS
TUTAL | SEINELN GRUUPS
AITHIN SRÜUPS
10141 | | TOTAL | 129
147.504
12.011 | 123
5.699
0.799 | 121
5-223
0-979 | 129
4•690
2•715 | 124
6-605
0-596 | 129
5.000
0.0 | 127
17.283
4.829 | 129
83.488
15.467 | 104
2.683
1.457 | 104
2.603
1.640 | 2.590
2.590
1.355 | 113
2.673
1.561 | | Ψ. | 17
152.824
14.341 | 16
5.625
0.836 | 16
5.250
1.000 | 17
4.471
2.718 | 17
6.548
0.795 | 17
5.000
0.0 | 17
19.706
5.440 | 17
ol. 824
lo. 633 | 13 2.652 1.109 | 12
2-417
1-105 | 2.402
1.200 | 13
2.709
1.230 | | 7 | 99
147.040
11.672 | 95
5. e 55
0. 820 | 92
5.239
0.976 | 99
4• 798
2• 729 | 95
6• 632
0• 566 | 99
5. 300
0. 0 | 97 | 99
d3.515
15.3du | 81
2-651
1-530 | 81
2. 765
1. 750 | 85
2.612
1.407 | 90
2-644
1-531 | | ~ | 13
144.077
9.070 | 12
5.833
0.577 | 13
5-677
1-038 | 13
4.154
2.734 | 12
6.417
0.515 | 13
5.000
0.0 | 13
15-385
4-312 | 13
85-462
15-586 | 10
2.600
1.350 | 11
2.152
1.168 | 11
2.636
1.120 | 10
2.euc
1.9e9 | | | \$ 2.3 | 5 £ y | 25.7 | \$ 25 N | z £ Ŋ | : × 3 | Z E Z | ZIA | 3 £ 0 | 2 E J | 2 T 3 | * = 3 | | ~ | - | ~ | m | • | r. | • | ~ | un. | (A | | | ., | LLUYD 1-14: READING DEFICIENCY ANALYSIS UF VARIANCE RUNS ERIC ** *Full Text Provided by ERIC** > LLUYU 1-14C: NEGRO MALES - LOW SES | UNEGA SQ | 9680*0 | 0.2143 | -0.0121 | 0.2593 | 0.0129 | 0.3085 | 0.0542 | 0.0516 | -0-0083 | -0-0084 | 0.0093 | 0.0013 | |----------------|--|---------------------------------------|--|--|--|--|--|--|--|--|--|--| | - | | - | Ĩ | - | - | - | - | - | Ĩ | Ĩ | - | - | | + RATIO | 2-1223 | 15.3189 | 0.3083 | 19.3813 | 1.5422 | 29-7822 | 1269** | 4.4576 | 0.4937 | 0.4859 | 1.4977 | 1.0780 | | MEAN SQUAKE | 173.0053
63.5502 | 1617.3510
105.5786 | 0.0776
0.2515 | 1339.6958
69.1232 | 354-8710
230-1080 | 2111-1558
70-8865 | 270.9171
57.6779 | 314.7905
70.6188 | 21.2635 | . 20.9607
43.1352 | 64.3174 | 52-1079
48-3374 | | J. | 7 0 7 8 | 2
102
104 | 2
113
115 | 2
102
104 | 80
82
82 | 2
126
124 | 871
971
7 | 2
124
126 | 2
120
122 | 2
120
122 | 2
103
105 | 2
120
122 | | SUM OF SQUARES | 346.0107
5C44.0134
543 0. 0241 | 3234-7021
10769-0122
14003-7143 | 0.1551
28.4225
24.5776 | 2674-3916
7050-5703
9729-9619 | 709e7421
18408-6435
15118-3855 | 4222.3117
8931.7038
13154.0155 | 541.8342
7267.4216
7809.2558 | 629-5809
8756-7341
9386-3150 | 42.5271
5168.8063
5211.3333 | 41.9213
5176.2250
5218.1463 | 128.6347
4423.2993
4551.9340 | 104.2159
5800.4833
5904.6992 | | SOUNCE | BEINEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS WITHIN GROUPS TO TAL | BETWEEN GROUPS
WITHIN GROUPS
IJIAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BEINEEN GRUUPS
WITHIN GRUUPS
TOTAL | detween GRUUPS
Within Groups
Ijial | GETWEEN GRUUPS
WITHIN GROUPS
TUTAL | GETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWLEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRUUPS
WITHIN GRUUPS
Tutal | BETWEEN GROUPS
WITHIN GROUPS
Tutal | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | | TOTAL | 83
31.108
8.138 | 105
39-429
11-604 | 116
2.440
0.498 | 105
48.648
9.673 | 83
93.566
15.269 | 129
43.124
10.137 | 129
51.116
7.811 | 127
49.606
8.631 | 123
23-333
6-536 | 123
23-268
6-540 | 106
22-708
6-584 | 123
22-520
6-957 | | ** | 12
33.583
5.918 | 15
50.800
11.688 | 15
2.467
0.516 | 15
59-800
12-278 | 11
94.909
15.751 | 17
55.471
10.548 | 17
55-824
9-221 | 17
54.353
8.558 | 15
23-200
7-272 | 15
23.600
7.337 | 13
23.231
7.328 | 15
22.467
0.999 | | ~ | 62
31.419
7.543 | 79
38. 759
10. 260 | 89
2.449
0.500 | 75
47.671
7.529 | 64
94.453
15.506 | 99
42.455
8.154 | 99
50.758
7.171 | 97
49.351
8.435 | 96
23.573
6.082 | 96
23.438
6.680 | 83
23.036
6.575 | 96
22. 875
6. 942 | | 7 | 25.60 <i>7</i>
0.245 | 11
26.727
8.039 | 12
2.333
0.492 | 11
40.455
7.202 | 8
84.625
10.555 | 13
32.077
7.274 | 13
47.692
6.969 | 13
45.308
7.931 | 12
21.583
4.122 | 12
21.500
4.079 | 10
19.300
5.100 | 12
19.750
6.982 | | | 2 % 3 | ; E 3 | 2 E 7 | 250 | z e ^ | 2 × 7 | 257 | 2 2 0 | £ 28 | S E J | 8 E 3 | 2 7 3 | | 7 | £ 3 | 14 | 15 | 16 | 1.1 | a 1 | 61 | 20 | 21 | 22 | 23 | 54 | LLJYD 1-14: READING DEFILIENCY ANALYSIS OF VARIANCE KUNS | SES | | |---------|--| | Low | | | MALES - | | | NEGRO | | | 1-14C: | | | מאנז | | | 7 | | - | ~ | M | TUTAL | Source | SUM OF SQUARES | ą, | MEAN SUUARE | F KATTO | UMEGA SE | |-----|-------|------------------------|-----------------------------|-----------------------|------------------------|--|------------------------------------|---|---------------------|---------|-------------| | S | 2 2 3 | 000 | 15
21•133
7•120 | 4
27.500
12.583 | 19
22.474
8.540 | BEIMEEN GRUUPS
Mithin Gruups
Tutal | 128.0035
1144.7353
1312.7368 | 1
17
18 | 128.JJ35
09.0902 | 1.4306 | 0.0422 | | 76 | 2 E 3 | 12
28.583
5.501 | 95
31 • 03 2
5• 78 0 | 15
33.733
5.351 | 142
31-123
5-789 | BEIMLEN GROUPS
MITHIN GROUPS
MUTAL | 160.4005
3874.7253
4025.1557 | 2
115
121 | 90.2332
32.5610 | 2-1102 | 2820.0 | | ~ | 2 # 7 | 000 | 8
23.750
7.906 | 4
22.500
8.660 | 12
23.333
7.785 | DETWEEN GROUPS
WITHIN GROUPS
TOTAL | 4.1007
602.5000
066.0607 | 1011 | 4-1667 | 0.0629 | 1480.01 | | æ | 2 2 3 | 12
25.583
9.414 | 96
27.437
8.279 | 15
26.600
9.077 | 123
27-398
8-445 | BETHLEN GRÖUPS
WITHIN GROUPS
TOTAL | 61.33d0
8540.1417
8701.4797 | 2
120
122 | 30.0690 | 0.4260 | 4600°0 - | | 58 | S 7 3 | 12
27.007
7.303 | 95
23. 905
6. 986 | 15
30.733
4.964 | 122
29.008
6.795 | BETWEEN GRUUPS
WITHIN GRUUPS
TUTAL | 67-2444
5519-7474
5586-9918 | 2
113
121 | 33.6222 | 0.7249 | 6400.0- | | 9.0 | 2 € 3 | 12
29.583
10.086 | 96
29. 521
8. 526 | 15
31.067
8.064 | 123
29*715
8*575 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | \$1.2323
6959.4083
8571.0407 | 2
120
122 | 15.0162 | 0.2096 | I 3u | | 31 | ZEÀ | 12
22.333
5.416 | 96
26.563
8.329 | 15
28.533
8.749 | 123
26-390
8-225 | BETMEEN GRUUPS
WITHIN GRUUPS
TOTAL | 269-2433
7944-0250
8253-2683 | 2
123
122 | 134.6216
60.5335 | 2.0234 | 7.0164 | | 32 | S E S | 12
19.917
7.204 | 89
24.079
7.677 | 14
27.286
8.241 | 115
24-035
7-831 | BETWEEN GROUPS WITHIN GROUPS | 351.6376
6640.2232
6991.8609 | 2
112
114 | 175.818d
59.2877 | 2.9655 | 1680.0 | | m | 2 2 3 | 7
21.000
2.769 | 73
23.932
6.985 | 13
23.846
7.537 | 93
23.699
6.833 | BETWEEN GROUPS
WITHIN GROUPS | 55.22.01
4240.3498
4295.5699 | 7 06 6 | 27.6100
47.1150 | 0.5860 | 2620.0- | | 4 | S X S | 6
22.333
7.737 | 63
- 23 • 698
6 • 869 | 11
23.000
7.029 | 80
23_500
6.954 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 13.39ea
380e.5032
3826.0000 | 27.5 | 0.0984
49.4364 | 0.1255 | -0.0221 | | | 2 = 0 | 5
29.030
7.483 | 51
25.667
7.549 | 7
27.000
6.976 | 63
26.079
7.430 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 57.269d
3.405.3333
3422.6032 | 7 | 28.6349
50.0889 | 0.5105 | - 0.015d | | 36 | ZES | 26.607
2.887 | 42
26.357
6.401 | 7
27.000
5.307 | 52
26.462
5.886 | between GROUPS
WITHIN GROUPS
131AL | 2.6136
1764.3095
1760.9231 | 2 7 T | 1.30 od
30.00 63 | 0.0363 | - U • U 385 | LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VAKIANCE KUNS | 393 | | |---|---| | į | 3 | | | | | MARK | | | A F. G. D | | | 1-146 | | | () () () () () () () () () () | | | ONEGA SQ | 0.0348 | -0.0079 | 6090*0- | 0.0703 | 0.0436 | 0.0458 | 0.0522 | \$060°n | 9940-0 | U.5138 | 0.3210 | 0.0439 | |----------------|------------------------|-----------------------|---|-----------------------|-----------------------|-----------------|----------------------|-----------------------|------------------------------|----------------------|----------------------|---------------------| | F RATIO | 3.0202 | 0.7312 | 0.9766 | 4.6677 | 3.3024 | 3.1109 | 3.7536 | 5.6278 | 1.5382 | 12.6263 | | 2.8382 | | MEAN SQUARE | 344.0799 | 89.3938 | 2.1444 | 545.9748 | 435.8652 | 461.6129 | 332.9719 | 416.1220 | 417.3568 | 1718-7341 | 946.5273 | 35.7604 | | | 113.9251 | 122.2555 | 2.1958 | 116.9683 | 131.9846 | 148.3865 | 88.7074 | 73.9409 |
271.3237 | 136-1237 | 152.6526 | 12.5996 | | ğ | 2
109
111 | 7 9 p | 2 4 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 7 9 6 | 98
100 | 2
85
87 | . 2
94
94 | ~ 0 ° 5 | 2
19
21 | 2
19
21 | 2
19
21 | 2
77
79 | | SUM OF SQUARES | 648.1597 | 178-7875 | 4.2848 | 1091.9496 | 871.7303 | 923.2254 | 665.9438 | 832.2439 | 834.7136 | 3437.4682 | 1893.0545 | 71.5208 | | | 12417.8403 | 8068-8646 | 105.3974 | 10995.0195 | 12934.4875 | 12612.8538 | 8604.6162 | 6654.0408 | 5155.1500 | 2546.3500 | 2900.4000 | 970.1667 | | | 13106.0000 | 82-47-6522 | 109.6863 | 12086.9691 | 13806.2178 | 13536.0795 | 9270.5600 | 7486.9247 | 5989.8636 | 6023.8182 | 4793.4545 | 1041.6875 | | SOURCE | BETWLEN GRUUPS | BEINEEN GRUUPS | BETNEEN GRUUPS | BETHEEN GROUPS | BETWEEN GROUPS | DETREEN GRUUPS | BETWEEN GROUPS | BEIREEN GROUPS | BETWEEN GROUPS | BETWEEN GROUPS | delween GRUUPS | GETREEN GROUPS | | | WITHIN GRUUPS | WITHIN GROUPS | Within Gruups | WITHIN GROUPS | WITHIN GROUPS | WITHIN GRUUPS | WITHIN GROUPS | WIIHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | mithia GRUUPS | WITHIN GROUPS | | | TUTAL | TJIAL | Tütal | Tutal | TOTAL | TOTAL | 10:AL | TJIAL | TOTAL | TOTAL | Tütal | TJIAL | | TOT AL | 112 | 69 | 51 | 97 | 101 | 88 | 100 | 93 | 22 | 22 | 22 | 40 | | | 82.000 | 85.348 | 3.255 | 44.103 | 48-327 | 40.898 | 52.120 | 45.892 | 63.773 | 61.091 | 62.545 | 7.431 | | | [U.866 | 11.013 | 1.481 | 11.231 | 11-750 | 12.473 | 9.677 | 9.021 | 16.889 | 10.937 | 15.108 | 3.631 | | • | 14 | 9 | 8 | 10 | 11 | 11 | 11 | 10 | 4 | 4 | 4 | 12 | | | 47.571 | 88.776 | 2.750 | 53.700 | 56.000 | 48.182 | 59.455 | 54.400 | 76.750 | 87.250 | 62. J30 | 9-067 | | | 13.449 | 14.515 | 1.832 | 13.945 | 12.669 | 14.211 | 9.863 | 12.545 | 14.151 | 10.782 | 11.+92 | 3-822 | | 2 | 87 | 55 | 39 | 77 | 80 | 69 | 80 | 73 | 15 | 15 | 15 | 62 | | | 81.761 | 85-127 | 3.282 | 43.312 | 47.837 | 40.47d | 51.250 | 45.055 | e0.533 | 54.267 | 57.533 | 7.005 | | | 10.301 | 10-394 | 1.432 | 10.718 | 11.541 | 12.069 | 9.461 | 8.120 | 17.876 | 12.453 | 13.336 | 5.358 | | 1 | 11
77-273
11-499 | 5
81.600
11.675 | 4.000
1.155 | 10
+:-660
7-486 | 10
43.800
9.43d | 34.500
9.914 | 9
50.489
8.373 | 10
43.500
7.382 | 3
02.66 <i>I</i>
0.351 | 3
00.335
0.774 | 2
01.667
3.215 | 6
7.500
4.930 | | | 2 5 0 | 2 E J | 250 | S E V | 2 5 1 | 2 * y | 2 × 3 | 2 T 3 | : E 0 | 2 5 3 | t E À | 2 T O | | 7 | 37 | 9 | 39 | 0 4 | 41 | 45 | 4 | * | 4
& | 4 | 4.7 | 4
30 | The second secon LLJYD 1-14: READING DEFICIENCY ANALYSIS UF VARIANCE NUNS ERIC Full fext Provided by ERIC LLJYD 1-14C: NEGRU MALES - LOW SES | UMEGA SO | 6880-0 | 0.0127 | 6210 | J.U208 | 991 | 0.0815 | 0.0298 | 234 | 0.6846 | |----------------|--|--|--|--|--|--|--|--|--| | ON. | 3.0 | 2 | -0-0179 | 3 | 891C-C- | 9 | 2.0 | -0.0234 | 9.0 | | F KATIU | 5.1966 | 1.5593 | 0.2190 | 1.9337 | 0.2728 | 4.1735 | 2.3373 | 0.0977 | 141.0318 | | MEAN SUUARE | 03.6704 | 24.8602 | 2.8742 | 15.5498
8.0415 | 4.5621
16.7246 | 47.2635 | 27.4112 | 1.1040 | 2413.4418 | | Ą | 2 T S | 2 | 7 9 P
9 P
9 P
9 P | 2 ic 2 | 7:00 | 7 6 4 5 | 7 \$ 99 | 2
13
13 | 2
120
123 | | SUM UP SQUARES | 121.3408
969.0313
1096.3721 | 49.7203
1334.2642
1368.9885 | 5.7454
1128.7011
1134.4494 | 31.0996
083.5254
714.6250 | 9.1243
1421.5916
1430.7159 | 95.1209
817.0613
912.1842 | 54-6223
985-1317
1059-9540 | 2.2079
628.7288
660.9367 | 43c1.5a31
2156.564
0964.24a1 | | SUURCE | BETWEEN GROUPS
MITHIN GROUPS
TUTAL | BETREEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIM GROUPS
131AL | BETWEEN GRUUPS
WITHIN GRUUPS
TJIAL | BETNEEN GRUUPS
WITHIN GRUUPS
TJTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TJIAL | BETNEEN GROUPS
MITHIN GROUPS
TOTAL | BETHEEN GROUP.
AITHIA GROUP.
TJIAL | | TOT AL. | 86
7.256
3.582 | 87
6-984
4-019 | 89
6.921
3.590 | 88
7.375
2.866 | 48
7.307
4.055 | 85
5.21 <i>2</i>
3.295 | 87
5.977
3.477 | 79
6-253
3-3-2 | 129 | | m | 12
10.167
5.040 | 13
8.092
4.423 | 12
7.167
3.639 | 12
8.543
2.678 | 12
7.563
4.274 | 13
7.015
4.154 | 13
7.846
2.853 | 11
6-536
3-982 | 17
113.294
4.921 | | 7 | 67
6-851
3-470 | 67
6- 776
4- 007 | 69
6-797
3-575 | 65
7.304
2.830 | 69
7.159
4.075 | 64
4.672
2.944 | 66
5.651
3.495 | 60
6.217
3.211 | 39.485
4.181 | | - | 7
6.143
3.485 | 7
5-857
2-734 | 8
7.625
4.033 | 7 6.000 | 7
8.286
3.904 | 8
5.625
3.021 | 8
5.250
3.655 | 8
0.000
3.045 | 13
08-231
2-166 | | | 2 2 7 | 257 | 2 4 7 | 2 Σ λ
3 | 2 E 7 | 2 x 3 | s z y | V 3 V | :: E A | | 7 | 64 | 90 | 2.1 | 25 | 53 | بر
4 | ŝ | 56 | 57 | LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOVO 1-148: NEGRO MALES - High IQ | : | 0.0 | | |--|--|----------------| | | • | | | : | 0.0 | | | 0 | • | | | 666 | 0.0 | | | #
** | • | | | AS. VA | 0.0 | | | -
- | • | | | DE FOR | 0.0 | | | ပ
- | • | | | NATION | 0.0 | | | Z Z | • | 5 | | ITH E | 0.0 | 175 0/ | | # # 57 WITH ELIMINATION CODE FOR CLAS. VAR # 999.000 | CLAS CATEGORY UPPER LIMITS = 91.000, 108.000, 990.000, 0.0 , 0.0 , 0.0 , 0.0 , 0.0 , 0.0 | 000 341 000 34 | | * | ŏ. | Š | | CLASSIFICATION VAR = | 08.000 | Ĭ | | NCI. | | Č | | ICA | • 00 | | | SSIF | 16 | 2 | | CLA | 11 | 3 | | | MITS | | | 21 | R LI | • | | # | JPPE | ا | | BLE | RY C | | | ARIA | TEGO | | | JF ∨ | S CA | | | NO OF VARIABLES = 57 | CL A: | i | | | | | | CODES TO BE FXCLUDED FOR VARS 1 TO 57 ARE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0. | CLAS CATEGORY UPPER LIMITS = | RY UPPER | LIMITS | ŧi | 91.000 | _ | .000 | 066 | 108.000, 990.000, | • | • | • 0 | • | 0 | • | • 0•0 | | • | | • | - | |--|------------------------------|----------|---------|-----|---------|---|------|-----|-------------------|-------|------|------|---|------|--------|--------|---|---|---|-----|---| | ARE 0.0 ,
0.0 , 0. | RESTRICTION | VAR = | | 3 | H RANGE | | | 00 | 10 | 175.0 | 000 | | | | | | | | | | | | 0.0 · | CODES TO BE | EXC. UDE | D FOR V | ARS | 1 10 5 | | | 0 | • | 0.0 | • | 0.0 | • | -9.0 | 00 | 0.0 | • | 0 | • | ļ | | | . 0.0 · 0.0 | 0-0 | 0-0 | 0 | • | 0.0 | | Ó | • | 0 | • | 0 | • | 0 | • | l
i | 1.000. | 0 | 0 | • | 0.0 | | | . 0.0 | 0.0 | 0 | • | • | 0 | • | 0 | • | 0.0 | • | • | • | 0 | • | _ | • 0.0 | o | 0 | • | 0.0 | · | | • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • | 0.0 | 0 | • | • | 0 | • | 0.0 | • | 0.0 | • | • | • | 0 | • | _ | • 0•0 | Ó | • | • | 0 | _ | | ŏ. | 0.0 | 0 | ō | • | 0 | • | 0.0 | • | 0 | • | • | • | 0 | • | - | 0.0 | ŏ | 0 | | 0 | • | | | 0.0 | 0.0 | • | • | 0.0 | • | 0.0 | • | 0.0 | • | 999. | •000 | | | | | | | | | | | | C TO TAMADE | OTA IS C | 57F6.03 | FORMAT OF DATA IS (57E6.0) | 296 DATA TO BE READ FROM TAPE WITHOUT REWIND MAX # OF OBS TO BE INCLUDED THIS PROBLEM == GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIFVER GROUP 3 = OVERACHIEVERS = AVERAGE ACHIEVERS J LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: NEGRO MALES - High IQ | MEGA SQ | 0.6232 | 0.0124 | -0.0111 | -0.0170 | -0.0085 | -0.0161 | 0.2972 | 0.0007 | 0.0774 | -0.0222 | 0.0040 | 0.0339 | |----------------|---|---|---|---|--|--|---|---|--|---|---|--| | F RATIO | 2.3440 | 1.6727 | 0.3980 | 0.0529 | 0.5473 | 0.0407 | 24.0517 | 1.0378 | 4.2730 | 0.0981 | 1.1894 | 2.7354 | | MEAN SQUARE | 103.3510 | 2.5113 | 0.5715 | 0.3843 | 0.7620 | 0.0236
0.5797 | 334.9986
13.9279 | 87.6778
84.4804 | 8-8815
2-0785 | 0.1941 | 1.5937 | 5.3284 | | * | 110 | 2
104
106 | 2
101
109 | 2
110
112 | 2
105
107 | 2
105
107 | 106
108 | 2
110
112 | 25 E | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | . 7 6 6 | ~ % 8 | | SUM OF SQUARES | 206.7020
4850.1652
5056.8673 | 5.0225
156.1364
161.1589 | 1.1430
153.6298
154.7727 | 0.7686
799.3907
800.1593 | 1.4041
134.6978
136.1019 | 0.0471
60.8695
60.9167 | 669.9771
1476.3532
2146.3303 | 175-3556
9292-8391
9468-1947 | 17.7630
155.8908
173.6538 | 0.3862
158.2142
158.6024 | 3.1874
121.9296
125.1170 | 10.6567
186.9998
197.6566 | | SOURCE | S | 8. | :
• | s | : 40 | | s | 100 | | | | 1 0 | | nos | BETWEEN GROUPS
WITHIN GROUPS
TOTAL GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL |
BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GROUPS
HITHIN GROUPS
TOTAL | | TOTAL SOU | 113 BETWEEN GROU
140.789 WITHIN GROUP
6.7.9 TOTAL | 107 BETWEEN GROUPS
5.234 WITHIN GROUPS
1.233 TOTAL | اِي ج | | 108 BETWEEN GROUPS
5.713 WITHIN GROUPS
1.128 TOTAL | 106 BETWEEN GROUPS
4.361 WITHIN GROUPS
0.755 TOTAL | 109 BETWEEN GROUPS
19.817 WITHIN GROUPS
4.458 TOTAL | 113 BETWEEN GROUPS
94.522 WITHIN GROUPS
9.194 TOTAL | - G | 83 BETWEEN GROUPS
2.542 WITHIN GROUPS
1.391 TOTAL | 94 BETWEEN GROUPS
2.564 WITHIN GROUPS
1.160 TOTAL | | | | | BETWEEN
WITHEN G
TOTAL | BETWEEN
WITHIN G
TOTAL | BETWEEN
WITHIN G
TOTAL | :
m so | | | | BETWEEN
MITHIN G
TOTAL | | | BETWEEN
WITHIN (
TOTAL | | TOTAL | 18 113
42.389 140.599
5.952 6.7.9 | 107 BETWEEN
5.234 WITHIN G
1.233 TOTAL | 110 BETWEEN
4-955 WITHIN G
1-192 TOTAL | 113 BETWEEN
4.690 WITHIN G
2.673 TOTAL | 108
5.713
1.128 | 106
4.361
0.755 | 109
19.817
4.458 | 113
96.522
9.194 | 78 BETWEEN 2.654 MITHIN G | 83
2.542
1.391 | 2.564
1.160 | 99 BETWEEN 2.232 WITHIN (| | 3 TOTAL | 142.389 140.789
5.952 6.7.9 | 16 107 BETWEEN
5-375 5-234 WITHIN G
0-957 1-233 TOTAL | 18 110 BETWEEN
4-889 4-955 WITHIN G
1-023 1-192 TOTAL | 18 113 BETWEEN
4.722 4.690 WITHIN G
3.159 2.673 TOTAL | 17 108
5.647 5.713
0.862 1.128 | 17 106
4.353 4.361
0.606 0.755 | 17 109
24.706 19.817
4.135 4.458 | 16 113
100-722 98-522
10-964 9-194 | 12 78 BETWEEN 2.654 MITHIN G | 12 83
2.667 2.542
1.497 1.391 | 14 94 2.286 2.564 1.383 1.160 | 14 99 BETWEEN
2.429 2.232 WITHIN (
1.505 1.420 TOTAL | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Boxt Provided by ERIC LLOVD 1-14E: NEGRO MALES - High IQ | | 0.0199 | 0.5335 | -0.0049 | 0.4673 | -0.00-1 | 0.6435 | 0.2210 | 0.2173 | 0.0657 | 0.0637 | 0.0324 | 0.0512 | |----------------|--|--|--|--|--|--------------------------------------|--|--|--|--|---|------------------------------------| | - KA110 | 1.7316 | 57.0365 | 0.7512 | 43.9924 | 0.6690 | 102.9778 | 17.0267 | 16.5453 | 4.7637 | 4.6373 | 2.6931 | 3.8671 | | MEAN SQUARE | 87.3255
50.4318 | 3752.1613
65.7657 | 0.1439 | 2502.7565
56,8906 | 130.0130 | 3633.6 9 39
35.2862 | 521.8469
30.6489 | 687.8356 | 174.8220
36.6986 | 175.1317
37.7656 | 133,7906 | 178.6151 | | À | 2 % L | 95
97 | 2
100
102 | ~ % F | 7 9 89
98 | 2
110
112 | 2
110
112 | 2
109
111 | 2
104
106 | 104 | 7 8 9 7 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2 2 2 | | SUM OF SQUARES | 174.6509
3479.7935
3654.444 | 7504.3625
6249.6375
13754.0000 | 0.2877
19.1492
19.4369 | 5005.5129
5404.6095
10410.1224 | 260.0261
12827.3072
13087.3333 | 7267.3679
3681.4794
11146.8673 | 1043.6978
3371.3818
4415.0796 | 1375.6712
4531.4359
5907.1071 | 349.6441
3816.6550
4166.2991 | 350.2634
3927.6244
4277.8879 | 267.5815
4869.6363
5136.2178 | 357.2303
4778.8258
5136.0561 | | SOURCE | DETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
VIIHEN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | | TOTAL | 72
35.778
7.174 | 98
48.143
11.908 | 103
2.748
0.437 | 98
54.755
10.360 | 69
101.333
13.873 | 113
50.611
9.977 | 113
56.398
6.279 | 112
55.161
7.295 | 107
28.159
6.269 | 107
28.336
6.353 | 101
27.673
7.167 | 107
27-215
6-961 | | m | 10
39.500
6.241 | 16
65.438
10.347 | 16
2.812
0.403 | 16
68.000
8.641 | 11
97.091
11.895 | 18
65.333
6.686 | 18
62.167
6.802 | 18
61.889
6.173 | 17
30.765
7.454 | 17
30.824
7.410 | 17
30.529
7.666 | 17
29.941
8.235 | | 8 | 55
35,345
7,108 | 70
46.700
7.341 | 77
2.753
0.434 | 70
54.029
7.087 | 54
102.315
13.771 | 82
49.915
5.283 | 82
56.049
5.363 | 81
54.704
5.832 | 78
28.269
5.864 | 78
28.487
5.980 | 73
27.521
7.069 | 78 27.295 | | - | 7
33.857
8.174 | 12
33.500
9.170 | 10
2.600
0.516 | 12
41.333
8.627 | 4
99.750
21.297 | 13
34.615
8.471 | 13
50.615
4.610 | 13
48.692
9.844 | 12
23.750
5.048 | 12
23.833
5.184 | 11
24.273
5.746 | 12 22.833 | | | N E S | N # Q | z z S | N M O | Z E S | N N O | E E O | N E N | M E Q | Z E S | Z E S | ZX | | | | | | | | | | | | | | | - 67 - LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | ğ | |---------| | - High | | MALES | | NEGRO | | 1-14E: | | LLOYD 1 | | CMEGA SQ | 0.1306 | 0.0492 | -0.0178 | 0.1033 | 0.0012 | 0.0605 | 0.1209 | 0.1042 | 0.0394 | 0.0515 | -0-0242 | 0.0249 | |----------------|--|--|--|--|---|--|--|--|--|--|--|--| | F RATIO | 3.3279 | 3.7711 | 0.5464 | 7.2053 | 1.0651 | 4.4132 | 8.3604 | 7.2201 | 3.0705 | 3.4447 | 0.0084 | 1.9565 | | MEAN SQUARE | 175.1534
52.6319 | 106.8067 | 20.6782
37.8451 | 54.0847 | 65.0590
61.0842 | 251.1351
56.9057 | 377.7590
45.1842 | 399.3859
55.3157 | 209.5863
68.2570 | 154.9001 | 0.4520
53.6144 | 77.4908
39.6067 | | * | 7 8 9
30 8
30 8 | ~ <u>*</u> 5 5 6 | 24
25 | 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 2 4 9 1 9 4 1 9 4 1 9 4 1 9 4 1 9 4 1 9 4 1 9 4 1 9 1 9 | 103
105 | 2 10 7
10 6 | 2 5 6 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2 %
100 | 87
89 | 8
83
83 | 2
72
74 | | SUM OF SQUARES | 350.3068
1473.6932
1824.0000 | 213.6134
2945.5268
3159.1402 | 20.6782
908.2833
928.9615 | 779.3938
5624.8118
6404.2056 | 130-1179
6352-7606
6482-8785 | 502.2701
5861.2865
6363.5566 | 755.5179
4699.1550
5454.6729 | 798.7719
5752.8356
6551.6075 | 419.1727
6689.1838
7108.3564 | 3912-1553
4221-9556 | 0.9040
4342.7627
4343.6667 | 154.9817
2851.6850
3006.6667 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 31
29.000
7.797 | 107
32.729
5.459 | 26
27.038
6.096 | 107
32.654
7.773 | 107
32.804
7.820 | 106
33.594
7.785 | 107
31.738
7.174 | 107
29.150
7.862 | 101
27.594
8.431 | 90
27.578
6.888 | 84
28.833
7.234 | 75
28.133
6.374 | | m | 8
34.625
7.539 | 17
35.765
5.106 | .28.667
7.257 | 17
37.647
7.211 | 17
34.353
8.403 | 17
37.412
6.965 | 17
36.765
6.369 | 17
34.412
8.747 | 17
31.000
8.193 | 16
30.625
9.003 | 15
29.000
7.928 | 13
30.923
5.560 | | · ~ | 22
26.909
7.157 | 78
32.372
5.527 | 20
26.550
5.826 | 78
32.397
7.338 | 78
32.885
7.530 | 77
33.468
7.701 | 78
31.436
6.924 | 78
28.795
7.108 | 74
27.446
8.587 | 66
27.379
6.094 | 62
28.823
7.226 | 56
27.786
6.635 | | | 1
30.000
0.0 | 30.750 | 0-0 | 12
27.250
7.665 | 12
30.083
8.826 | 12
29.000
7.249 | 12
26.583
5.712 | 12
24,000
7,616 | 10
22.900
5.087 | 8
23.125
6.357 | 7
28.571
6.803 | 6
25.333
3.445 | | | Z E S | Z Z S | z e S | z # S | z z S | z z S | N # QS | S = 8 | N M OS | Z E S | ZES | Z E S | | 7 | 25 | 56 | 27 | 58 | 62 | 9
8 - | 31 | 32 | E | % | e
E | 36 | ERIC Arull Bast Provided by ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | | Ç | | |--|---|--| | | 2 | | | | : | | | | | | | | | | | | | | | | | | | ONEGA SO | 0.1262 | 0.0730 | 0.0569 | 0.1213 | 0.2236 | 0.0013 | 7 560. 0 | 0.2490 | 0.0533 | 0.3608 | 0.2273 | 0.0112 | |----------------|--|--|--|--|--|--
--|-------------------------------------|--|--|--|--| | F RATIO | 8.1460 | 4.3098 | 3.1102 | 7.3514 | 14.6822 | 1.0560 | 2.8660 | 15.2544 | 1.6736 | 7.4925 | 4.3833 | 1.5092 | | NEAN SQUARE | 793-6672 | 374-6097 | 5.5661 | 857.0183
116-5795 | 1146.9376 | 225.9958 | 448.9947
76.5418 | 825.2648
54.1001 | 594.9529
355.4917 | 1385.7710 | 201.6133 | 21.6668 | | * | ~ 9 8 | 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 | . 7 69
69 | ~ 6 5 | 222 | 80
82 | 2 6 6 7 8 7 8 9 9 7 8 9 9 7 8 9 9 7 8 9 9 9 9 | 2
83
85 | 20 22 22 | 22 | 20 22 | 89.2 | | SUM OF SQUARES | 1587.3744
9353.5347
10940.9091 | 749.2194
7040.5901
7789.8095 | 110,9495 | 1714.0366
10375.5721
12089.6087 | 3493.8752
10946.4827
14440.3579 | 477.2998
18079.6640
18556.9639 | 897.9894
6812.2171
7710.2065 | 1650.5295
4490.30T7
6140.8372 | 1189.9058
7109.8333
8299.7391 | 2771.5420
3699.0667
6470.6087 | 1769.2116
4036.2667
5805.4783 | 43.3335
1248.9887
1292.3222 | | SOURCE | BETHEEN GROUPS
HITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
FOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GROUPS
MITHIN GROUPS
TOTAL | BETHEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | | TOTAL | 99
88.030
10.566 | 91.048
91.688 | 70
2.886
1.378 | 92
50.065
11.526 | 95
53.221
12.394 | 83
43.843
15.043 | 92
56.272
9.205 | 86
50.884
8.500 | 23
65.478
19.423 | 23
62.870
17.150 | 23
64.391
16.245 | 90
8-456
3-811 | | ,m | 17
94.353
10.647 | 13
97-462
11-659 | 13
2-615
1-261 | 14
59.286
8.827 | 15
66-600
12-603 | 15
48.400
18.298 | 14
63.000
8.884 | 13
61.077
5.993 | 6
76.333
12.226 | 6
81.333
13.277 | 6
78.833
10.108 | 16
9.537
3.941 | | 7 | 70
87.986
9.284 | 64
90.297
8.662 | 51
2-804
1-357 | 69
49.130
11.384 | 69
51.493
10.793 | 59
43.305
14.255 | 67
55.627
8.572 | 65
49.385
7.526 | 15
63.00 <u>0</u>
20.139 | 15
56.533
14.167 | 15
60-067
15-364 | 67
8-164
3-608 | | = 4 | 12
79.333
12.033 | 7
86.000
10.661 | 6
4.167
1.329 | 9
42.889
8.298 | 11
45.818
8.953 | 9
39.778
14.167 | 11
51.636
9.678 | 8
46.500
7.874 | 2
51.500
26.163 | 2
55.000
2.828 | 53.500
14.849 | 7-857 | | 7 | 37 M
SD | 38 M
SD | 39 M | 40 M M OS | 41
8 80
8 80 | 2 4 S S S S S S S S S S S S S S S S S S | 43 M
SO | N 44 M SD | r r S | 54
50
S S S | N # 50 | % 84
SD | ERIC ATUIT TEACH PROVIDED BY ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC ** *Tull Text Provided by ETIC | JQ. | |--------| | - High | | MALES | | NEGRO | | 1-14E: | | LLOYD | | 9 | | | | | | | | | | |----------------|--|--|--|--|--|--|--|--|--| | CMEGA SO | 0.060 | 0.1017 | -0-0142 | 0.6715 | 0.0304 | 0.0694 | 0.1419 | -0.0095 | 0.7217 | | F RATIO | 4.0732 | 6.4360 | 0.3356 | 4.6210 | 2.4885 | 4.5056 | 8.7734 | 0.5703 | 147.5484 | | NEAN SQUARE | 69.5177
17.0672 | 93.8854
14.5875 | 4.0887
12.1827 | 40.1037
8.6786 | 41.0395
16.4916 | 53.0399
11.7719 | 106.9037
12.1650 | 7.0221 | 3194.7032 | | 2 | ~ % \$ | 93.2 | 222 | 2 T 6 | ~ % \$ | 2 2 8 | 2 2 8 | 7 8 0 | 110 | | SUM OF SQUARES | 139.0353
1570.1857
1709.2211 | 187.7709
1356.6354
1544.4062 | 8.1774
1120.8121
1128.9895 | 80.2074
789.7500
869.9574 | 82.0790
1517.2262
1599.3053 | 106.0797
1071.2394
1177.3191 | 213.8074
1108.8309
1322.6383 | 14.0442
1083.5602
1097.6044 | 6389.4064
2381.7087
8771.1150 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 95
8-137
4-264 | 96
8.781
4.032 | 95
7.411
3.466 | 94
8.021
3.058 | 95
7.168
4.125 | 94
. 6.085
3.558 | 94
7.596
3.771 | 91
7-066
3-492 | 100.912 | | m | 16.312
4.191 | 16
11.500
3.688 | 16
6.937
2.516 | 16
9.375
3.074 | 16
8-062
4-008 | 16
8.187
3.816 | 16
9.500
3.916 | 15
7.933
3.494 | 18
114.778
6.691 | | 8 | 71
7.958
4.183 | 71
8.507
3.909 | 70
7.586
3.565 | 70
8-000
2-909 | 71
7.296
4.026 | 69
5.841
3.359 | 69
7.696
3.444 | 67
6.925
3.417 | 82
100.232
3.646 | | r4 | 8
5.375
3.420 | 9
6-111
3-219 | 9
6.889
4.314 | 8
5.500
3.024 | 4.250
4.496 | 9
4.222
3.270 | 9
3.444
3.005 | 6.667
4.213 | 13
86.000
6.733 | | | SES | 2 # S | Z E S | 2 E 8 | 2 # 0 | N M CS | z z S | N E S | SE | | 7 | 64 | 20 | 15 | 25 | 23 | * | 55 | 26 | - 25 | ERIC Full Text Provided by ERIC 0.0 CLASSIFICATION VAR = # 57 HITH ELIMINATION CODE FOR CLAS. VAR = 0.0 0.0 0.0 85.000 LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-140: NEGRO MALES - Low IQ NO OF VARIABLES = 57 CLASSIFICATION VAR = # 57 NITH CLAS CATEGORY UPPER LIMITS = 91.000. 108.000. 990.000. 0. RESTRICTION VAR = # 8 NITH RANGE OF 50.000 TO 85. CODES TO BE EXCLUDED FOR VARS 1 TO 57 ARE 0.00. 296 DATA TO BE READ FROM TAPE WITHCUT REWIND # OF OBS TO BE INCLUDED THIS PROBLEM = FORMAT OF DATA IS (57F6.0) MAX # OF OBS TO BE INCLUDE 1 = UNDERACHIEVERS GROUP = AVERAGE ACHIEVERS GROUP LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RLS | OMEGA SQ | 0.0144 | 0.0003 | -0.0119 | -0-0136 | 0910-0- | -0.0013 | 0.0248 | 0.0480 | 0.0395 | -0-0168 | -0.0219 | -0.0125 | |----------------|--|--|--|--|--
--|--|--|--|--|--|--| | F RATIO | 1.8592 | 1.0144 | 0.3727 | 0.2055 | 66£1°0 | 0.9263 | 2.4359 | 3.9726 | 2.7480 | 0.2732 | 0.3031 | 0.3927 | | MEAN SQUARE | 277.0578 | 1.1528 | 0.5275 | 1.6273 | 0.1836 | 0.4985 | 48.7528
20.0146 | 291.0768
73.2712 | 6.5823
2.3953 | 0.8169
2.9899 | 9.0074
2.3826 | 1.1090
2.8240 | | ä | 115
117 | 103
105 | 104
106 | 2
115
117 | 106
108 | 2
108
110 | 2
110
112 | 2
115
117 | 84 87 8 | 85
87 | ~ \$ & | 2
95
97 | | SUM OF SQUARES | 554.1156
17137.1471
17691.2627 | 2.3056
117.0529
119.3585 | 1.0550
147.2067
148.2617 | 3.2546
910.5166
913.7712 | 0.3677
139.2837
139.6514 | 0.9234
53.8333
54.7568 | 97.5057
2201.6093
2299.1150 | 582.1537
8426.1853
9008.3390 | 13.1646
196.4119
209.5765 | . 1.6338
254.1390
255.7727 | 0.0147
214.4369
214.4516 | 2.2181
268.2819
270.5000 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 118
151.822
12.297 | 106
5-396
1-066 | 107
5-187
1-183 | 118
4.720
2.795 | 109
6.147
1.137 | 111
4.595
0.706 | 113
15.088
4.531 | 118
72.881
8.775 | 85
2.929
1.580 | 88
2.941
1.715 | 93
2-871
1-527 | 98
2.929
1.670 | | | 18
154.944
13.189 | 16
5.062
1.436 | 16
5.187
1.424 | 18
5.000
2.657 | 17
6-118
1-576 | 18
4.389
0.850 | 18
17.222
4.609 | 18
70.944
9.710 | 14
3.429
1.651 | 13
3.154
1.405 | 14
2.857
1.167 | 15
3.267
1.624 | | | 86
152.012
11.898 | 78
5.474
0.990 | 78
5-231
1-161 | 86
4.721
2.823 | 79
6-177
1-083 | 81
4.630
0.679 | 81
14.691
4.355 | 86
72.326
8.476 | 60
2.983
1.589 | 62
2.806
1.836 | 66
2.879
1.613 | 71
2.887
1.626 | | | 146-643
12-852 | 12
5.333
0.985 | 13
4e.923
1.038 | 14
4.357
2.951 | 13
6-000
0-816 | 12 4.667 0.651 | 14.643
4.986 | 14
78.786
7.423 | 2.000
1.095 | 13
2.692
1.437 | 13
2.846
1.519 | 12
2.750
2.050 | | | Z E W | N W QS | N W QS | N E G | SES | SES | ZXS | Z E G | SEC | Z Z G | ZIV | NES | | 7 | -72 - 134 | | | | | | | | | | | | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS > LLOYD 1-140: NEGRO MALES - Low IQ | ONEGA SO | 0.0237 | 0.3557 | -0.0170 | 0.3115 | 0.0029 | 0.4462 | 0.0715 | 0.1162 | 0.006 | 0.0193 | 9900° 0- | 0,000-0- | |----------------|--|--|--|--|--|-------------------------------------|--|--|--|--|--|--| | F RATIO | 1.7999 | 28.6066 | 0.1808 | 23-6252 | 1.0921 | 52-5281 | 5.5055 | 8.6258 | 1-3551 | 2.0556 | 0.6882 | 0.7883 | | NEAN SQIARE | 85.4811
47.4931 | 1750.5199 | 0.0427 | 1031.7048
43.6696 | 169.3374 | 2143.2657 | 232.9960 | 435.9163
50.5363 | 37.8679 | 56.4301 | 23.5231
34.1783 | 27.1694 | | 5 | 63
65
65 | 94.5 | 95 | 258 | 222 | 2
115
117 | 2
114
116 | 2
113
115 | 2 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 5 1 5 5 1 | 2 10¢
10¢ | 2 9 91 | 7 501
100
100 | | SUM OF SQUARES | 170.9621
2992.0682
3163.0303 | 3501.0398
5935.7102
9436.7500 | 0.0853
22.4147
22.5000 | 2063.4096
4235.9504
6299.3600 | 378-6748
12309-3387
12688-0135 | 4286.5314
4692.2567
8978.7881 | 465.9921
4824.5378
5290.5299 | 871.8325
5710.6071
6582.4397 | 75.7758
2907.8130
2983.5888 | 112-8601
2855-0464
2967-9065 | 47.0463
3041.8668
3088.9130 | 54.3388
3584.3154
3638.6542 | | SOURCE | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 66
26.879
6.976 | 100
34.550
9.763 | 98
2.357
0.482 | 100
45.080
7.977 | 74
86.581
13.184 | 118
38.042
8.760 | 117
47.855
6.753 | 116
45.698
7.566 | 107
20.720
5.305 | 107
20.589
5.291 | 92
20.109
5.826 | 107
19.888
5.859 | | m | 11
30.182
5.997 | 17
46.706
8.971 | 14
2.429
0.514 | 17
54.471
8.747 | 12
88.500
15.658 | 18
50.944
8.250 | 18
52.500
8.068 | 18
52.000
7.654 | 16
22.687
5.558 | 16
23.000
5.877 | 13
21.385
6.500 | 16
21.375
6.500 | | 8 | 44
26.568
7.337 | 73
32.945
7.890 | 72
2.347
0.479 | 73
43.808
6.235 | 51
87.275
12.603 | 86
36.826
6.295 | 85
47.118
6.105 | 84
44.750
7.154 | 79
20.304
5.261 | 79
20.089
5.140 | 69
20.101
5.770 | 79
19.772
5.517 | | = | 11
24.818
5.636 | 10
25.600
4.300 | 12
2.333
0.492 | 10
38.400
4.858 | 11
81.273
12.924 | 14
28.929
3.583 | 14
46.357
6.721 | 14
43.286
5.993 | 12
20.833
5.096 | 12
20.667
5.015 | 10
18-500
5-482 | 12
18-667
7-240 | | | SES | Z # S | z # S | Z # Q | N # Q | Z E S | N # Q | S # S | ZES | N # Q | z z S | N M Q | | | 1 00 | 4 | r. | 9 | 11 | 18 | 6 | 20 | 21 | 22 | 23 | 54 | - 73 - · · · · 135 ERIC Full Text Provided by ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | 8 | |--------| | Low | | | | MALES | | NEGRO | | 1-140: | | LLOYD | | OMEGA SQ | -0-1401 | -0-023 | -0-3485 | -0-0055 | -0-0104
| -0-0113 | -0-0044 | 0.0302 | -0.0126 | -0.0341 | 0.0381 | -0.0470 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | 0.1401 | 0.8807 | 0.3538 | 0.7082 | 0.4602 | 0.3998 | 0.7676 | 2.4633 | 0.5661 | 0.0438 | 1.8716 | 0.2366 | | NEAN SQUARE | 6.9143 | 29.1671
33.1168 | 28.7500
81.2500 | 40.6607
57.4138 | 20.3217 | 28.7153
71.8232 | 33.5279
43.6782 | 119.5119 | 16.2140
28.6427 | 1.4824
33.8057 | 59.8957
32.0029 | 7.0573
29.8331 | | DF | ~ | 102 | N N 4 | 104
106 | 102
104 | 10°2
10°4 | 104
106 | 2 18
63
83 | 64
64
64 | 55
57 | 745 | 33 3 | | SUM OF SQUARES | 6.9143
246.8000
253.7143 | 58.3342
3377.9134
3436.2476 | 57.5000
162.5000
220.0000 | 81.3214
5971.0338
6052.3551 | 40.6435
4504.2708
4544.9143 | 57.4307
7469.6160
7527.0467 | 67.0558
4542.5330
4609.5888 | 239.0238
4415.0294
4654.0532 | 32.4280
1919.0577
1951.4857 | 2.9648
1859.3111
1862.2759 | 119-7914
1312-1176
1431-9091 | 14-1145
924-8267
938-9412 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 7
16.571
6.503 | 105
30.495
5.748 | 5
19.000
7.416 | 107
24.439
7.556 | 105
27.971
6.611 | 107
28-374
8-427 | 107
22.720
6.594 | 21.309
7.074 | 70
21.514
5.318 | 58
21.828
5.716 | 23.045
5.771 | 34
24.824
5.334 | | m | 2
15.000
7.071 | 16
31.750
4.810 | 22.500
10.607 | 16
25.500
8.406 | 16
29.312
6.630 | 16
-30.000
9.501 | 16
24.500
7.248 | 14
24.500
8.985 | 12
22,583
7,513 | 9
22.333
5.385 | 27-000
5-177 | 6.26.000
4.561 | | 8 | 5
17.200
7.014 | 77
30.494
5.926 | 2
15.000
7.071 | 79
24.570
7.096 | 78
27.833
6.431 | 79
27.975
7.987 | 80
22.512
6.574 | 68
21.147
6.242 | 52
21.115
4.378 | 45
21.756
5.970 | 34
22-235
5-836 | 25
24440
5.731 | | - | 000 | 12
28-833
5-734 | 20.000
0.0 | 12
22-167
9-456 | 11
27-000
8-124 | 12
28.833
10.179 | 11
21.636
5.836 | 12
18,500
8,285 | 6
22.833
8.010 | 21.500 | 24.000 | 3
25.667
4.041 | | | ZIG | 2 2 0 | Z E S | Z # S | Z X Q | N M Q | Z E S | N H Q | N M GS | ZES | N I Q | NA | | 7 | 25 | 5 8 | 27 | 78 | 53 | 30 | 31 | 32 | 33 | m
T | 35 | 36 | | | 136 | | | | | | | | | | | | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | 2 | |--------| | 705 | | • | | MALES | | NEGRO | | 1-140: | | LLOYD | | OMEGA SO | \$900° 0 | -0.0306 | -0.0161 | -0.0039 | 0.0023 | 0.0736 | -0.0227 | -0.0121 | -0.0736 | | -0.0983 | -0.0239 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | 1.3299 | 0.2438 | 0.7777 | 0.8456 | 1.0977 | 3.6702 | 0.1118 | 0.5460 | 0.5198 | 0.3136 | 0.3733 | 0.2529 | | HEAN SQUARE | 114.9107 | 25.7020 | 1.5845
2.0375 | 51.9457 | 92.1490 | 342.2547 | 6.7348
60.2407 | 21.0538 | 91.5238 | 89.0675
284.0202 | 68.0556
182.3081 | 3.0222
11.9519 | | 25 | 2 4 8 | 24
50 | 2
25
72 | 2
76
78 | 80
82 | 54
66
66 | 21
77
84 | 2
73
75 | 11 13 | 11 2 13 | 11 2 | 69
63 | | SUM OF SQUARES | 229.8213
8122.2199
8352.0412 | 51.4040
5059.7724
5111.1765 | 3.1690
50.9381
54.1071 | 103.8915
4668.5389
4772.4304 | 184.2979
6715.5575
6899.8554 | 684.5093
5968.1772
6652.6866 | 13.4695
4638.5305
4652.000 | 42.1076
2815.0503
2857.1579 | 183.0476
1936.6667
2119.7143 | 178-1349
3124-2222
3302-3571 | 136.1111
2005.3889
2141.5000 | 6.0444
729.0649
735.1094 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN | TOTAL | 97
76.454
9.327 | 51
78.765
10.111 | 28
3•679
1•416 | 79
39.241
7.822 | 83
42.313
9.173 | 67
37.254
10.040 | 80
47.00r
7.674 | 76
40.895
6.172 | 14
50.143
12.769 | 14
57.214
15.938 | 14
53.500
12.835 | 64
6.172
3.416 | | m | 15
79.533
10.013 | 8
80.375
11.426 | 5
4.400
1.673 | 10
42.000
8.485 | 11
46.091
10.700 | | 9
48.111
11.263 | 10
42.800
7.391 | 3
48.667
18.717 | 3
62.000
25.060 | 3
54.667
20.817 | 11
6-818
4-285 | | 8 | 71
75.549
8.996 | 39
78,718
10,105 | 21
3.524
1.401 | 60
38.650
7.494 | 62
41.823
8.848 | 50
36.720
10.321 | 62
46.903
7.355 | 57
40.579
5.855 | 9
48.667
12.430 | 9
54.556
15.076 | 9
51.556
11.865 | 46
6.000
3.148 | | M | 11
78.091
10.261 | 4
76.000
9.416 | 2
3.500
0.707 | 9
40.111
9.400 | 10
41.200
9.402 | 32.375
5.263 | 9
46.556
6.366 | 9
40.778
7.102 | 2
59.000
0.0 | 2
62.000
7.071 | 2
60.500
3.536 | 7
6.286
4.071 | | | ZIO | SIS | Z # S | z z G | ZIV | SEC | ZES | N N S | z z S | Z Æ W | Z I N | z z S | | 7 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 4 | 2 | 4 | 14 | 48 | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | 8 | | |--------|--| | Low | | | • | | | MALES | | | NEGRO | | | 1-140: | | | CLOYD | | | OMEGA SQ | 0.0330 | 0.0240 | -0-0291 | 0.0634 | -0.0005 | 0.0316 | 0.0247 | -0.0222 | 0.6693 | |----------------|--|--|--|--|--|--|--|--|--| | F RATIO | 2.1423 | 1.8247 | 0.0385 | 3.2660 | 0.9834 | 2.0444 | 1.8233 | 0.3476 | 120-3891 | | MEAN SQUARE | 21.3536
9.9675 | 14.8262
8.1253 | 0.4274 | £3.9476
7.3323 | 16.7756
17.0588 | 13.1088 | 17.4847 | 3.2752
9.4228 | 2715.6053
22.5569 | | 2 | ~ \$ \$ | ~ 1 3 | 65
67 | ~ 4 % | 6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | 69
63 | 2 2 4 | 52 65 | 2
115
117 | | SUM OF SQUARES | 42.7072
637.9196
683.6269 | 29.6524
520.0192
549.6716 | 0.8547
722.2041
723.0588 | 47.8952
469.2690
517.1642 | 33.5511
1074.7064
1108.2576 | 26.2176
391.1417
417.3594 | 34.9695
594.5690
629.5385 | 6.5504
537.0996
543.650 | 5431.2107
2594.0436
8025.2542 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 6.075
3.211 | 67
5.373
2.886 | 68
5.882
3.285 | 6.731
2.799 | 66
6.894
4.129 | 64
3.703
2.574 | 65
5.231
3.136 | 60
5.350
3.036 | 118
99.847
8.282 | | m | 12
7.250
3.441 | 13
6.308
3.473 | 12
64 000
3.931 | 11
8.182
3.601 | 11
8.455
4.719 | 11
4.636
3.585 | 13
6.615
3.754 | 11
4.909
3.113 | 18
113.611
6.118 | | :
N | 48
6.062
3.097 | 48
4.958
2.790 | 49
5.816
3.206 | 49
6.673
2.528 | 48
6.521
4.032 | 46
3.304
2.250 | 45
4.778
2.976 | 42
5.333
3.034 | 86
98.884
4.641 | | #4 | 7
4.143
3.078 | 6.667
1.366 | 6.143
3.132 | 7
4.857
2.340 | 7
7.000
3.830 | 7
4.857
2.410 | 7
5.571
2.440 | 7
6-143
3-237 | 14
88.071
3.125 | | | ZIÑ | z = 8 | N W CS | 2 # G | N E S | Z Z S | Z Z Q | SES | Z E S | | 7 | \$ | 20 | 5 | 25 | es 76 | بر
4 | 55 | %
9 | 57 | LLJYD 1-14: READING DEFICIENCY AWALYSIS OF YARIAME RUNS LLJYD 1-140: WEGKU FEMALES - High SES | | 0.0 | | | | | | | | | | |---------------------------------------|-------------------------------|-----------------------|---|----------|-----|----------|--------|-------------|----------------------------|--| | | 0.0 | | | ŏ | 0.0 | ŏ | ó | | | | | 2 | Ö | | • | j | ö | j | ŏ | | | | | 999-000 | • | | 0.0 | • | • | • | • | | | | | | 0.0 | | 9 | 3 | 0.0 | 0.0 | 9 | , | • | | | #
** | • | | • | | | | | | | _ | | ¥ Y | 0.0 | | 0.0 | 300. | 0.0 | • | • | | | TAPE WITHOUT REWIND | | #ITH ELIMINATION CUDE FUR CLAS. VAR = | 0.0 . 0.0 . 0.0 | | | 1. | 0 | ö | 3 | | | II Re | | 3 | • | | -0.000 | • | • | • | | | | THOO | | DE F | • | | -9- | ; | 0.0 | • | • | | | З | | 3 | • | | • | | | | | | | | | N I C | 0.0 | | 0.0 | • | • | • | • | *000*666 | | DATA TO BE READ FROM | | MINA | | | • | 3.0 | 0.0 | 0.0 | 0.0 | 9.00 | | a t | | EL I | 0.0 | 4.000 | | | | | | 66 | | REA | | ITH | | 4 | 0.0 | • | • | • | • | • | | BE: | | • | .00 | 0 | | | o. | 2.0 | 0 | 0.0 | | A TU | | 25 | 90.06 | 0 10 | • | • | | • | • | | | JAT | | 15 # = | ÷. | 1.000 | 0.0 | ó | 0 | <u>ء</u> | ó | 0 | | 559 | | CIASSIFICATION VAR | 91.000, 10b.000, 990.000, | - | | • | ó | ÷ | ò | ઝ | | • | | 2 | 102 | 0F | ARE | • | • | • | • | • | | 7
25: | | LAII | აიი. | WITH KANGE OF | 57 | 2.0 | 0.0 | 0.0 | 0.0 | 0. 0 | | 408 L | | SIFI | 91. | + KA | 1 10 | _ |
 | | | | <u>ه</u> | | T A C | 11 | 1 1 1 | IRS | • | • | ٠ | • | • | | H | | J | 1115 | | Α V | 3.0 | 0.0 | 0 | ٠
د | . | 6 | un Eü | | 25 | Î | ٥ | ט אַנ | • | | | | _ | 57F0 | I NC. | | ** | PPRK | #£
11 | しいした | 2 | 0.0 | 0 | ٠ | o.°0 |) \$1 | # | | 3LES | 3 | VA
Y | EXC | Ŏ | ð | Ŏ | ð | o o | I. K. | To | | KIA | r
ÇÜ, | I CN | 9 | • | • | • | • | • | AU 7 | r din | | 4 V A | LAI | RICI | S TU | 0.0 | J | 0.0 | 0.0 | 0.0 | AT C | 4
1 | | NU UF VARIABLES # 57 | CLAS LATEGURY UPPER LIMITS == | RESTRICTION VAR = # 0 | LUDES TU OL EXCLUDED FUR VARS 1 TO 57 ARE | | | | | | FURMAT OF DATA IS (57F0.0) | MAX & OF DOS TO BE INCLUDED THIS PRUBLEM | GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLUYU 1-14: KEADING DEFICIENCY AMALYSIS UF VARIANCE KUNS LLUYU 1-144: NEGKU FEMALCS - High SES | UMEGA SA | -0.0253 | 6200-0 | -0-0-50 | -0.0222 | -0.0054 | 0.0227 | 0690.0 | -0-0-0- | 0.1871 | 0.0004 | 0.0299 | 0-0193 | |----------------|--|--|--|--------------------------------|--|---|--|--|--|--|--|--| | • | Ĭ | - | Ĭ | ĭ | ĭ | J | J | Ĩ | ., | 3 | 9 | | | + RATIL | 0.1842 | 1.2567 | 0°5003 | J.2842 | 0.8267 | 1.7676 | 3.9806 | 0.3446 | 6.4709 | 1.0111 | 1.8012 | 1.5327 | | MEAN SEVARE | 15.3612
83.3459 | 2.4698
2.4593 | 0.4739
2.3654 | 2.5437
3.9508 | 0.6242 | 0.6553 | 120.9916
30.3954 | 88.9102
258.0271 | 16.4352 | 1.8478 | 1.0364 | 2.0222 | | ٩'n | 2 5 6 | 7 7 7 0 | 69
63 | 2 | 7 2 4 | ~ 7 % | 0 2 7
0 2 7 | 6 6 8 2
5 4 5 6 5 6 6 7 6 6 7 6 6 7 6 7 6 7 6 7 6 7 | 2 4 2
50 | 2 2 5 2 5 | 51.52 | 51
53 | | SUM OF SQUARES | 30.7231
2253.9436
5284.6667 | 5.4391
146.2763
152.2154 | 0.9478
144.2866
145.2344 | 5.0874
503.8974
568.9848 | 1.2484
40.4131
48.0615 | 1.3106
23.3501
24.5667 | 241.9833
1762.9348
2004.9180 | 177.8204
16255.7099
16433.5303 | 32.8705
114.6158
147.6863 | 3.6955
95.0317
96.7273 | 3.7337
50.7856
54.5192 | 4.0444
07.2889
71.3333 | | SOURCE | delacen Gruups
Within Gruups
Tutal | SETNEEN GKOUPS
MITHIN GKOUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS MITHIN GROUPS | BETWEEN GRUUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
Within GROUPS
TUTAL | BEIMEEN GKOUPS
Within Groups
Total | | TOT AL | 66
141.333
9.017 | 55
4-477
1-542 | 64
4-391
1-518 | 66
4.015
2.959 | 65
4.754
0.867 | 66
3.667
0.616 | 61
19.426
5.781 | 66
88-621
15-900 | 51
2-745
1-719 | 55
2-636
1-352 | 52
2.596
1.034 | 54
2.556
1.160 | | æ | 13
142.385
11.899 | 13
3.923
1.891 | 13
4.308
1.750 | 13
3-462
2-817 | 13
4.615
1.121 | 13.00
13.00
10.00
10.00
10.00 | 10
22.500
4.249 | 13
91.462
18.915 | 9
4-333
179 | 9
2.178
0.833 | 8
2.625
1.302 | 9
3.111
1.691 | | 2 | 48
140.917
7.205 | 47
4.660
1.372 | 46
4.370
1.511 | 48
4.167
3.027 | 47
4.745
0.820 | 48
3- 729
0-530 | 46
19.348
5.638 | 48
84, 229
15, 335 | 38
2•289
1•313 | 42
2.524
1.330 | 41
2.512
0.978 | 40
2.400
1.057 | | - | 342.600
142.600 | 5
4-200
2-049 | 5
4.800
1.095 | 5
4.000
3.082 | 5.200 | 5
3.800
0.447 | 5
14.000
6.519 | 5
85-000
15-083 | 3.500
2.082 | 4
3.500
2.380 | 3.667
0.577 | 5
2-800
0-447 | | | 5 % Q | s Æ N
O | N I N | | S Z Ž | N X N | ZEŽ | N X N | SE 3 | ZZS | 2 = 3 | N E N | | 7 | - | ~ | m | • | Ś | ٠ | ~ | 30 | o | 0 | = | vi | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLUYD 1-14B: NEGRO FEMALES - High SES | UNEGA SQ | 0.1717 | 0.4663 | -0-0130 | 0.2701 | -0-0018 | 0.4433 | 0.1510 | 1961.0 | 0.0264 | 0.0523 | 0.1022 | 0.0240 | |----------------|--|--|--|--|--|--|------------------------------------|--|------------------------------------|------------------------------------|--|--| | F RATIO | 4-6275 | 26.7779 | 0.6348 | 11.9191 | 0.9628 | 27.2809 | 6.7815 | 8.8035 | 1.8674 | 2.7645 | 7858. | 1.7884 | | MEAN SQUARE | 391.9494
84.6996 | 2690.2521
100.4656 | 0.1551
U.2444 | 1404.2931 | 268.8525
279.2504 | 2151.4271 | 398.4969
5d.7621 | 515-6313
58-5713 | 120.0548
64.2892 | 187.4248
67.7965 | 215.3536 | 133.0749
74.4092 | | 5 | 3,2 2,3 3,4 | 7 9 R | 0 4 V | 0 0
0 0
0 0 | 7
8
7
9
8
7
9 | 6 63 2
6 53 2 | 7 7 7 9 | 2 1 6 6 6 8 | 63 | 5 T F S | 2, 56 ∧
8 & 6 ∧ | 69 | | SUM OF SQUARES | 743.8988
2710.3869
3494.2857 | 5380.5042
5626.0720
11 CO6.5763 | 0.3103
13.1985
13.5088 | 28C8.5861
6597.8206
9406.4068 | 537.7049
10611.5146
11149.2195 | 4302.8542
4968.3125
9271.1667 | 796.9938
3643.2524
4440.2462 | 1 C31.2626
3572.8468
4604.1094 | 240.1097
3921.6403
4101.7500 | 374.8495
4135.5880
4510.4375 | 430.7072
2766.4182
3197.5254 | 266.1499
4538.9595
4835.1094 | | SOURCE | GETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BETHEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS WITHIN GROUPS TOTAL | BETWEEN GROUPS WITHIN GROUPS TOTAL | BETWEEN GROUPS
*ITHIN GROUPS
IJIAL | BETWEEN GRUUPS
MITHIN GROUPS
TUTAL | | TOT AL. | 35
35-143
10-138 | 59
47.915
13.776 | 57
2.614
0.491 | 59
56.424
12.735 | 41
97.341
16.695 | 51-167
11-943 | 65
55.492
8.329 | 64
56-328
8-549 | 64
30.063
8.128 | 64
30-344
8-461 | 59
30.644
7.425 | 64
27-828
8-733 | | m | 7
43.286
6.264 | 13
63-385
10-129 | 10
2.700
0.483 | 13
67.923
14.297 | 7
1 03 - 714
20 - 072 | 13
65.000
10.376 | 13
61.769
8.228 | 13
63.231
6.418 | 13
32.538
7.344 | 13
33.923
8.098 | 11
33.273
6.973 | 13
29.462
6.422 | | ~ | 24
34.208
9.132 | 41
45.463
10.385 | 44
2.614
0.493 | 41
54.439
9.857 | 31
96.774
15.682 | 48
49.313
8.027 | 47
54.489
7.471 | 46
55.364
7.814 | 47
29.915
8.206 | 47
29-957
3-343 | 44
50. 841
7.159 | 47
28.021
8.751 | | 3 | 4
26.500
13.626 | 5
27.800
4.494 | 3
2.333
0.577 | 5
42.8C0
6.044 | 3
88 • 333
20 • 207 | 5
33.000
6.671 | 5
48.600
8.112 | 5
47.800
9.094 | 4
23.750
7.676 | 4
23.250
0.954 | 4
21.250
5.058 | 4
20.250
7.411 | | | S Z Z | 2 5 3 | 2 7 3 | Z E Z | Z E S | 2 x 3 | 5 £ 3 | 223 | .? E 7 | 2 7 0 | 25 7 | 757 | | ד | 6 | 14 | 15 | 91 | 17 | 9 | 18 | 20 | 77 | 22 | 23 | 77 | LLJYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | SES | |---------| | High | | | | FEMALES | | NEGRO | | 1-148: | | LL 3 YO | | 7 | | 7 | 7 | m | TOTAL | SUURCE | SUM OF SQUARES | Ą | MEAN SUDARE | F RATEO | UMEGA SG | |-----|----------------|-----------------------|-------------------------|------------------------|--------------------------|---|-------------------------------------|----------------|----------------------|---------|----------| | 2 5 | SES | 000 | 24
28• 475
9• 317 | 25.000
7.071 | 28.577
9.109 | GETWEEN GROUPS
WITHIN GROUPS
TOTAL | 27.7212
2046.6250
2674.3462 | 1
24
25 | 27.7212
85.2760 | 0.3251 | -0-0267 | | 26 | 8 × 3 | 28.250
6.131 | 47
33.979
7.571 | 12
37.667
5.433 | 63
34.317
7.363 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 2 d7.2554
3074.3954
3301.6508 | 733 | 143.6277
51.2399 | 2.8030 | 0.0541 | | 2.7 | 2 2 3 | 903 | 10
30.800
9.976 | 8
31.250
11.311 | 18
31.000
10.267 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 0.9000
1791.1000
1792.0000 | 1
16
17 | 0.9303 | 0.0080 | -0.0583 | | 26 | S * 3 | 4
29.500
6.658 | 46
35.978
7.965 | 13
38.846
7.614 | 63
36.159
7.988 | BETWEEN GROUPS
Within Groups
Tutal | 272.7421
3643.5706
3956.4127 | 7 0 29 | 136.3711
61.3945 | 2-2212 | 0.0373 | | 53 | 2 2 3 | 4
30.000
8.105 | 46
35. 826
8. 182 | 13
36.231
8.691 | 63
35.540
8.281 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 132.7344
4110.9164
4251.5508 | 7 2 2 7 9 | 66.3672
68.6486 | 0.9668 | 1100.0- | | 90 | z z ż | 4
23.250
10.751 | 45
32-222
10-410 | 12
36.917
9.180 | 61
32.557
10.505 | BETWEEN GROUPS
WITHIN GROUPS
10TAL | 579-5047
00-1-4444
0621-0492 | × 50.0 | 289.8024
104.1628 | 2.7422 | 0.0552 | | 31 | <i>≅ ∗</i> : 3 | 4
26.000
8.124 | 48
32.042
9.625 | 11
35.727
10.555 | 63
32.302
9.806 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 291.1714
5670.0985
5901.2698 | 2 0 5
8 2 8 | 145.5357
94.5016 | 1.5406 | 0.0109 | | 32 | S Z Z | 3
21.333
9.815 | 47
31. 556
9. 514 | 10
37.900
9.492 | 60
32.133
9.969 | DETREEN GROUPS
WITHIN GROUPS
1JTAL | 696.0475
5166.8858
5862.9333 | 5 5 6
5 6 | 348.0238
90.6471 | 3.4393 | 0.0865 | | 8 | 3 € y | 2
23.500
2.121 | 45
30.267
10.319 | 10
36.200
8.189 |
57
31.070
10.089 | BETWEEN GRUUPS
ITHIN GRUUPS
TJIAL | 4 06.4143
5292.9000
5599.7193 | 5 5 7
5 8 | 203.4096
98.0167 | 2.0753 | J.0364 | | 34 | 2 × 7 | 24.000
5.057 | 41
29.049
8.789 | 10
34.300
6.961 | 53
64.84.84
84.848 | SETHERN GRUUPS
MITHIN GRUUPS
TUTAL | 292.7900
3554.0024
3850.7925 | 2 | 146.3950
71.1600 | 2.0573 | J.0384 | | 35 | \$ £ \$ | 32.000
0.0 | 31
30.2 90
7.24 4 | 30.444
6.932 | 41
30.366
7.446 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 2.9029
2214.5093
2217.5122 | 58.
54. | 1.4514
54.2792 | 0.0249 | -0.0499 | | 30 | 5 × 3 | 22.600 | 28
29.179
7.498 | 7
31.000
0.028 | 36
29-333
7-191 | BETWEEN GRUUPS
#ITHIN GRUUPS
Tulat | 73.6929
1750.10/1
181 0.0000 | 35 | 36.9404
52.6J¥3 | 0.7023 | - J.010d | LLJYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | SES | |---------| | High | | 1 | | FEMALES | | NEGRÜ | | 1-148: | | LLJYJ | | CHEGA SO | 0-1390 | 0-0307 | -0.0267 | 0-0287 | 0.0259 | 0~0028 | -0-0030 | 0-0292 | -0-0651 | -0.0750 | -0-0713 | -0.0073 | |----------------|--|--|--|--|--|--|--|--|---|------------------------------------|--|--| | F RATEO | 5.5189 | 1.8076 | 0.5581 | 1.6646 | 1.5977 | 1.0590 | 0.9346 | 1.6459 | 0.1447 | 0.0238 | 0.0682 | 0.8082 | | MEAN SQUARE | 696.4679
126.1966 | 215.8765
119.4292 | 0.5601 | 207.2212
124.4889 | 311.9556
195.2540 | 313.4079
295.9382 | 105-9121 | 187-0694
113-6593 | 54.8571
379.0000 | 14-2917 | 30.0060
440.1424 | 8.9561
11.0818 | | J. | 55 S | 49
50 | 2
31
33 | 774 | ~73 | 39
41 | 7 1 6 | 7 0 7 | 1
12
13 | 1
12
13 | 1
12
13 | . 50
50
52 | | SUM OF SQUARES | 1392-9359
6688-4213
8681-3571 | 431.7529
5732.6000
6164.3529 | 1.1203
31.1150
32.2353 | 414.4424
5224.5354
5642.9778 | 623.9111
8200.5667
6824.5778 | 626.8159
11541.5889
12168.4048 | 211.8242
4646.3576
4858.1818 | 374-1389
4546-3728
4920-5116 | 54.8571
4548.0000
4602.8571 | 14.2917
7191.2043
7205.5000 | 30.0060
5281.7083
5311.7143 | 17.9122
554.0878
572.0000 | | SUIRCE | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GROUPS
Within Groups
Tutal | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
Within Groups
Tutal | BETWEEN GROUPS
WITHIN GROUPS
TJTAL | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN G. UPS
MITHIN ADUPS
IC AL | BETWEEN GROUPS WITHIN GROUPS TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOT AL | 56
88.393
12.122 | 51
91.412
11.103 | 34
3.588
0.988 | 45
50.978
11.325 | 45
60-378
14-162 | 42
53.881
17.228 | 44
54.364
10.629 | 43
53.814
10.824 | 14
72.714
18.817 | 14
71.500
23.543 | 14
72-143
20-214 | 53
8.000
3.317 | | • | 11
96.091
10.616 | 10
97.300
10.615 | 8
3.875
0.835 | 10
56.100
10.214 | 9
62 .667
13 . 500 | 9
53.222
21.615 | 9
55.556
12.350 | 9
56.889
11.741 | 6
75.000
22.432 | 6
72.667
28.465 | 6
73.833
24.408 | 10
9.200
3.327 | | ~ | 41
87.634
11.115 | 39
90.000
11.143 | 25
3.48U
1.040 | 32
49.969
11.619 | 33
61.000
13.736 | 30
55.433
15.999 | 32
54• 781
10• 493 | 31
53.871
10.516 | 8
71.0C0
17.038 | 8
70. 625
21. 1 79 | 8
70. 875
18. 138 | 41
7.767
3.363 | | 7 | 4
75 • 000
14 • 37 • | 2
89.560
0.767 | 1
4.600 | 3
44.667
7.234 | 3
46.667
18.771 | 3
40.333
13.796 | 3
46.333
2.517 | 3
44.000
7.937 | 909
99 | 000 | 000 | 2
8.000
1.414 | | | ×ε3 | 3 E 3 | 2 2 3 | ر
د ع د | z z 3 | Z Z 7 | S & S | 2 % 3 | ≟ £ y | Z Z 3 | 2 Æ Å | ~ × 3 | | 7 | 37 | 70 | ታ
የ | 9 | 4 | 45 | 43 | 4 | 45 | 9 | 41 | 4
8 | 3781 - **143** LLJ YD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE KUNS | O CO | |---------| | . Utob | | • | | 7 | | SEMAILS | | ACC DO | | 1-144: | | - | | 3 | | - | | . UMEGA SU | 8900°0 | 04E0°0 | -0.0026 | 0.0497 | 6050-0- | 9560°n | 6090.0 | 0.0478 | J. 7391 | |----------------|--|--|------------------------------------|--|--|--|--|---------------------------------|--| | + RATIO | 1.1853 | 1.9507 | 0.9303 | 2.4130 | 0.2062 | 3.7479 | 2.6084 | 2.2813 | 9905**6 | | MEAN SWUARE | 14.9550
15.9916 | 33.5201
17.1840 | 13.1456 | 35.1995
14.5877 | 4-0508 | 53.8121
14.1690 | 40.3779
15.1321 | 36.1684
16.7307 | 1723.1495 | | J. | 2 12
53 | 51
53 | ~ 7.7 | 51
53 | 225 | 252 | 2 49
51 | 2 4 6
50 0 | 65.2 | | SUM OF SQUARES | 37.9101
815.5714
853.4815 | 67.0402
876.3857
943.4259 | 26.2912
706.5390
732.83u2 | 70.3949
743.9714
814.3704 | 8-1016
982-3512
990-6528 | 107.6243
708.4512
816.0755 | 80.7558
741.4750
822.23u8 | 70.3364
803.0750
679.4118 | 3446.2990
1146.6859
4594.9848 | | Suukce | BETWEEN GROUPS
WITHIN GROUPS
TJTAL | BETWEEN GRUUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS WITHIN GROUPS TOTAL | BETNEEN GRUUPS
Within Gruups
Tutal | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TJIAL | detmeen GROUPS
AITHIN GROUPS
TUTAL | BETWEEN GROUPS WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 54
7-481
4-013 | 54
10-463
4-219 | 53
7.057
3.754 | 54
9-259
3-920 | 53
6-623
4-364 | 53
6.80d
3.962 | 52
8•269
4•015 | 51
8-824
4-194 | 66
101.348
-8.408 | | M | 10
7.000
3.162 | 10
12.800
5.613 | 10
7.200
5.266 | 10
11.600
3.806 | 10
7-400
5-461 | 10
9.500
4.403 | 10
10,800
3,824 | 10
11.300
4.809 | 13
113.692
3.301 | | 7 | 42
7.786
4.170 | 42
9.929
3.777 | 41
7.195
3.378 | 42
8- 786
3- 867 | 41
6•415
4•129 | 41
6.415
3.654 | 40
7-625
3-953 | 40
8, 225
3, 906 | 48
99. 708
4. 356 | | | 2
3.500
3.536 | 2
10.000
2.626 | 3.560 | 7.5c0
0.707 | 2
7.000
5.657 | 2
3.000
0.0 | 2
8.500
0.707 | 8 .000
0.0 | 5
85.000
5.612 | | | × E 7 | S & S | 2 * 7 | 2 % 7 | S E .V | SES | K Z S | s z S | ZZĴ | | ~ | 64 | 20 | .c | 52 | 8 | 3 | S | \$ | 57 | LLJYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLJYD 1-14C: NEGRO FEMALES - LOW SES | NO OF VARIABLES = 51 | dles = | 21 | CLA | CLASSIFICATION VAR = # 57 | AF 101 | VAR | ** | 25 | H 1 1 H | WITH ELIMINATION CODE FOR CLAS. VAR | NAT ION | 000 | FOR | CLAS. | VAR | Ħ | 999.000 | 900 | | | |---|---------|--------|-------------|---------------------------|--------|-------|-------|-------------------|---------|-------------------------------------|------------|-----|-------|--------|-----|---|-----------|-----|-----|---| | CLAS CATEGORY UPPER LIMITS = | KY UPPE | K LIMI | 175 = | 91.000. | | 08.00 | 60 | 108.000, 993.000, | | · 0.0 · 0.0 · 0.0 · 0.0 | 0.0 | • | 0.0 | • | 0 | | 0.0 , 0.0 | • | 0 | | | RESTRICTION VAR = # 6 | VAR | .o | 11 | MITH KANGE OF | 16E 01 | | 2.000 | 0 10 | S. | 5.000 | | | | | | | | | | | | LUDES TO BE EXCLUDED FUR VARS 1 TC 57 / | EXCLUDE | EU FLA | VARS | 7 TC | 57 | ARE | 0.0 | | 0.0 | • | .000.60.00 | | .9.00 | • | 0.0 | • | 0.0 | • | | | | 0.0 | 0.0 | - | 0.0 | 0 | ٠ | • | 0 | | • 0.0 | 0.0 | • | 0 | . 0.0 | 1.000, | 90 | | 60 | | • | | | • 0•0 | o.
5 | • | ٠
٠
٠ | ? | • | • | 0. | | ••• | • | • | • | • | • | • | | • | 0 | 0 | • | | 0.0 | 0.0 | - | 0.0 | • | 0. | • | . 0.0 | | • | • | • | 13 | • | 9 | • | | • | 9 | 0.0 | • | | • 0.0 | 0.0 | • | | 7 | 3. | • | ٠. | | • | • | • | 9 | • | 0 | • | | • | 0 | 0 | | | 0.0 | ပ
၁ | • | 0.0 | • | 3 | • | | | • • • | 666 | 000 | | | | | | | | | | | FURMAT OF DATA IS (57F6.0) | ATA IS | (57F6. | 60, | | | | | | | | | | | | | | | | | | 0.0 GROUP 1 = UNDERACHIEVERS MAX & UF UBS TO BE INCLUDED THIS PROBLEM == 259 DATA TO BE READ FROM TAPE MITHOUT REWIND GROUP 2 = AVERAGE ACHIEVERS GROUP 3 - OVERACHIEVERS -.83-145 LLUYU 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | SES | |---------| | Ş | | • | | FEMALES | | NEGRO | | 1-140: | | LLOYD | | UMEGA SU | 0.0393 | -0.0150 | -0.0135 | -0.0154 | - 3-40 55 | 0.0 | 0.0178 | -0.0021 | -0.0001 | 3.0010 | -0.0123 | 8990.0 | |----------------|--|--|--|--|--|--|--|--|--|--|--|---| | F RATIO | 3.3748 | 0.1786 | 0.2603 | 0.1229 | 5989 | o. | 2.0319 | 0.8763 | 0.9946 | 1.0523 | 9878-0 | 4.7956 | | MEAN SULARE | 377-6993 | 0.0512 | 0.3268
1.2554 | 3.9486
7.7165 | 0.3459 | 20. | 61.5572
30.2960 | 210.9026
240.6859 | 2.4343
2.4496 | 2.9947 | 0.9070
| 8.7454
1.8320 | | Ą | 2
113
115 | 2
104
110 | 2
104
113 | 2
113
115 | 2
110
112 | 202 | 2
111
113 | 2
413
115 | 773 | 777 | 7 66
101 | 2
134
105 | | SUM OF SEUARES | 755-3987
12646-8082
134C2-2069 | 0.2326
70.3260
70.5586 | 0.0535
1.55.2 807
1.36.2 342 | 1.6973
471.9648
873.6621 | 0.4767
38.0543
38.5310 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 123-1144
3362-8505
3485-9649 | 421.805.2
27197.5
2719.5103 | 5.0685
25.1630
207.3316 | 5.9842
2.70.0505
2.42.04.00 | 1.414U
236.98Ul
236.7941 | 17.5709
100.0933
200.2642 | | SOURCE | DETWEEN GROUPS
WITHIN GROUPS
TOTAL | BEIMEEN GKOUPS
WITHIN GROUPS
TUTAL | BLINEEN GROUPS
WITHIN GROUPS
TJIAL | BETHEEN GRUUPS
WITHIN GRUUPS
TJIAL | BETWEEN GRUUPS
Within Gruups
Tutal | BETACEN GROUPS
WITHIN GROUPS
TOTAL | BEINEEN GKUUPS
MITH!N GRUUPS
1614L | BETALEN GROUPS
WITHIN GROUPS
TUTAL | BETREEN GRÜUPS
WITHIN GRÜUPS
TÜTAL | GETMEEN GRÜUPS
MITHIN GRÜUPS
TOTAL | BLIMEEN GRUUPS
MITHIN GRUUPS
Tuibl | DEINTEN GRUUPS
#1771 GRUUPS
FUTAL | | TOT AL | 116
143.655
10.795 | 111
5-604
0-801 | 111
5.207
1.113 | 116
4-966
2-751 | 113
6.681
0.587 | 116
5-000
0-0 | 114
19-649
5-554 | 116
87-621
15-497 | 95
3.042
1.688 | 100
2.800
1.668 | 102
2-853
1-538 | 106
2-547
1-402 | | m | 13
149.846
10.723 | 13
5.538
0.677 | 13
5.000
1.528 | 13
4.615
3.150 | 13
6.538
0.519 | 13
5.000
0.0 | 13
22.308
5.991 | 13
83.154
19.295 | 1.0
2.700
1.947 | 11
3.364
2.203 | 10
3.003
1.620 | 11
3.273
1.616 | | ٧ | 88
142.307
9.660 | 84
5.555
0.808 | 83
>-241
1-066 | 88
5.023
2.729 | 85
6. 682
0. 561 | 88
5.000
0.0 | 87
19.443
5.560 | 88
38.048
I*-284 | 72
2.986
1.570 | 76
2-724
1-537 | 77
2-779
1-570 | 81
2.321
1.340 | | 1 | 15
146.200
14.972 | 14
5.714
0.726 | 15
5.200
1.014 | 15
4.533
2.736 | 15
0.800
0.775 | 15
5.000
0.0 | 14
16.214
5.041 | 15
85-467
18-860 | 13
3.615
2.103 | 13
3.231
2.04d | 15
3•153
1•125 | 14
3.400
1.44 | | | ~ × 3 | 2 T 3 | z = 3 | 2 T O | 3 2 7 | 2 × 3 | z - √0 | 2 2 7 | 2 5 3 | 7 T 1 | 3 | ÷ • 3 | | 7 | - | ~ | m | 4 | S | • | ~ | 20 | ى | 0 | - | N | LLJYD 1-14: MEADING DEFICIENCY ANALYSIS OF VARIANCE RUNS | SES | |-----------| | 3 | | | | s | | r EMALe S | | 7 | | Ŧ | | ũ | | 1 | | 3 | | ď | | ٥ | | N. C. A. | | •• | | ر. | | * | | | | 1-140 | | | | CYLL | | > | | ~ | | -4 | | | | ONEGA SQ | 7050*0 | 0.2558 | 6000*0- | 0667*0 | -0°0057 | 0.2813 | 0.0637 | 0.0795 | 0-0043 | 0.0035 | -0.0032 | 0.0368 | |----------------|--|--|--|--|--|---------------------------------------|--|--|------------------------------------|--|--|--| | F RATIO | 2.8478 | 17.4958 | 0.9583 | 21.4766 | 0.7734 | 23.7057 | 0606.4 | 6.0079 | 1.2191 | 1.1802 | 0.8426 | 3.0585 | | HEAN SQUARE | 153.3457
53.8614 | 2342.9477
133.9147 | 0.2566 | 1936.3782
90.1621 | 193.4425
250.1125 | 2098.9249
88.541 | 322.0247
65.5992 | 538.1902
89.5806 | 77.8314
63.8426 | 77.4687
65.6408 | 57.7141
68.4946 | 192.6020
62.9718 | | å | 69
69
69 | 9 9 8 | 8 88
7 87 P | 9 9 S | 2
77
79 | 113 | 2
112
114 | 113 | 2
66
101 | 2
66
101 | 7 9 3 | 2
9 3
10; | | SUM OF SQUARES | 306.7714
3608.7143
3515.4857 | 4665.8954
12454.0629
17139.9583 | 0.5132
22.7595
23.2727 | 3872.7563
8385.0770
12257.8333 | 3 86.8851
19258.6649
15645.5500 | 4197.8498
10005.1416
14202.9914 | 644.0493
7347.1159
7991.1652 | 1076-3804
10122-6110
11198-9914 | 155.6628
6320.4156
6476.0784 | 154.9375
6498.4351
6653.3725 | 115.4281
6575.4810
6690.9091 | 385.2040
6234.2078
6619.4118 | | SOURCE | BEINEEN GROUPS
MITHIN GROUPS
1JIAL | BEINCEN GRUUPS
WITHIN GROUPS
TJIAL | BEIMEEN GROUPS
Within Groups
Total | BEINEEN GRUUPS
WITHIN GRUUPS
TOTAL | BETWEEN GRUUPS
Mithim Gruups
Total | BETWEEN GROUPS WITHIN GROUPS | BETWEEN GRUUPS
BITHIN GRUUPS
TOTAL | deimeen groups
Within groups
Total | BETWEEN GROUPS TOTAL | BETHEEN GROUPS
HITHIN GROUPS
TUTAL | BEINEEN GROUPS
AITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TUTAL | 70
54-514
7-533 | 96
45-521
13-432 | 88
2.591
0.517 | 96
53.042
11.35y | 80
90.425
15.770 | 116
48-491
11-113 | 115
53-617
8-372 | 116
55.991
9.868 | 102
30.196
8.007 | 102
30.255
8.116 | 99
29.303
8.263 | 102
27.529
8.096 | | 71 | 2 2.000
0.445 | 12
57-417
13-097 | 2.530
0.548 | 12
65.417
14.547 | 7
94.000
20.396 | 13
59.154
11.473 | 12
55.167
8.310 | 13
58.077
11.842 | 11
31.273
8.296 | 11
31.364
8.370 | 10
31.800
7.955 | 11
25.619
10.235 | | ~ | 54
35.500
7.628 | 71
46.265
11.494 | 7C
2.625
0.510 | 71
53-239
8-195 | 64
90. 42 u
15. 157 | 88
49.193
9.040 | 54.443
7.907 | 88
57.023
8.87d | 77
30.557
7.86d | 77
30. 049
8. 032 | 75
29.333
8.519 | 28.571
7.60% | | | 14
50.357
5.904 | 13 50.462 10.465 | 12
2.417
0.515 | 13
*0.538
10.829 | 5
04.770
16.917 | 15
55.133
9.694 | 15
47.553
9.054 | 15
48.133
10.629 | 14
27 • 143
8 • 448 | 14
27.214
8.294 | 14
27.357
6.990 | 14
23.143
7.804 | | | , , <u>)</u> | ; r } | 2 5 7 | : : à | 2 F A | 7 15 Å | 2 5 3 | 4 £ 3 | .= + 3 | 2 € 7 | 2 T O | 2 T 3 | | 7 | 7 | * | 15 | 16 | 11 | 20 | 15 | 20 | 17 | 77 | 23 | 54 | LLJYD 1-1+: READING DEFICIENCY ANALYSIS OF VARIANCE HUNS LLUYD 1-140: NEURU FEMALES - LOW SES | UME WA SU | 7100°n- | 0.0152 | -0-1266 | 9500.0 | -0-0104 | 01000-0- | 0.0131 | 0-0241 | -0.0036 | -0.0176 | -0.0107 | -0.0036 | |----------------|---|--|--|--|--|--|------------------------------------|--|--|--|--|--| | F KATIU | 0.9743 | 1.7725 | 0.0316 | 1.2.384 | 0.4820 | 0.6581 | 1.6793 | 7*5 085 | 0.8407 | 0.3872 | 0.6973 | 0.9115 | | MEAN SJUARE | 52.6111
53.9985 | 101.7347
57.3371 | 1.0400
53.1250 | 70.4219
54.6217 | 24-5927
51-0216 | 61.1179
92.8744 | 146.9749 | 200.0347 | 73.068U
86.9083 | 23.7807
53.0626 | 31.2153 | 33.0142
36.2212 | | J. | ~44 | 25.2 | 10 | 601
86 | 7 P C C C T | ~ 6 7 | 2
99
101 | 2 65
2 64 | ~ 5
5
5
8 | 2 g 2 | 7 5 7
5 0 | 7 9 8 | | SUM OF SHUARES | 1 c5.2222
2213.9369
2315.15.1 | 203.4693
5557.5207
5170.9990 | 1.0806
171.4750
373.555 | 141.8439
5352.9284
5494.7723 | 49.1854
5000.1215
5649.3069 | 122.2357
c.912.9461
9638.1818 | 293.9497
8654.8052
8958.7549 | 400.0695
3604.4611
9004.5306 | 146.1361
7474.1111
7626.2472 | 41.5013
3649.0584
3690.6197 | 62.4305
2417.4993
2479.9298 | 66.0235
1666.1756
1732.2041 | | SUMLE | JEIMEN GROUPS
WITHIN GROUPS
IJIAL | BETMEEN UKUUPS
WITHIN GRÜUPS
TOTAL | DETHEEN GRUUPS
MITHIN GROUPS
131AL | uelmeen GKCUPS
Althin GRCUPS
Tutal | BETWLEN GRUUPS
WITHIN GRUUPS
TUTAL | BEINEEN GKOUPS
Within GROUPS
Total | BETWEEN GROUPS WILHIN GROUPS | DETMEËN GRUUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
IJIAL | BEIWEEN GROUPS
Mithin Groups
Total | BETWEEN GROUPS
WITHIN GROUPS
TUTAL | BETWEEN GRUUPS
WITHIN GRUUPS
101AL | | TOTAL | 44
29.745
7.344 | 100
33.010
7.635 | 9
36-222
6-833 | 101
34-851
7-413 | 101
34-743
7-106 | 99
31.576
9.603 | 102
32.716
9.418 | 98
30.878
9.635 | 89
29-506
9-30e | 71
29.817
7.261 | 57
30-035
6-655 | 49
29.469
6.007 | | ď | 34.333
7.234 | 11
32.036
9.277 | 222 | 11
33.455
6.154 | 11
32,909
8,312 | 11
30.81d
9.683 | 11
35,000
10,973 | 11
29.545
11.501 | 28.000
8.602 | 32.60 <i>1</i>
3.055 | 32.007
7.572 | 3
33.000
8.185 | | ~ | 37
29.784
6.852 | 75
33.7C7
7.596 | 8
30.375
7.289 | 76
35.513
7.541 | 76
35.092
6.880 | 75
32-147
9-194 | 77
33.11.7
6.518 | 73
31.959
9.253 | 72
30.111
9.317 | 59
29. 881
7. 100 | 49
29.612
6.645 | 41
28.976
5.824 | | | 4
26.500
11.618 | 14
29.571
7.122 | 35.000
0.0 | 14
32-357
7-360 | 14
34.266
7.640 | 13
28.923
11.982 | 14
28-714
10-440 | 14
26.286
9.269 | 12
26.500
9.606 | 9
28.444
9.396 | 5
32.600
6.768 | 5
31.460
6.618 | | | 2 7 3 | 2 E 7 | 22.0 | 2 7 3 | 2 × 3 | ς ε 3 | 2 5 3 | K 3 2 | z z 3 | 5 2 3 | z z Ż | K Z Z | | 7 | 52 | 26 | 27 | 8 8 | 59 | 30 | 31 | 7 | 6 | * | 5 | 2 | LLUYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Yeart Provided by ERIC | SES | |---------| | Low | | • | | FEMALES | | NEGRU | | 1-14C: | | LLOYU | | ONEGA SQ | 0.0337
| 0.0121 | -0-0125 | 0.0674 | 0.1489 | 6170.0 | 1900-0- | 66+0*0 | -4-0085 | 9070*0 | 0.0107 | 99000 | |----------------|--|--|--|--|--|---|---|---|---|--|--|--| | F RATIO | 2.7463 | 1.4216 | 0.6784 | 9801*+ | d.8735 | 1.8972 | 0.7442 | 3.2335 | 0.771.7 | 1.5081 | 1.2918 | 1.2857 | | NEAN SQUARE | 350.9147
127.7750 | 129.6468
91.2009 | 1.5823 | 443 <u>-</u> 5018
107.9449 | 2222.5597 | 579.1085
305.2490 | 72.1425
91.1432 | 335.1055
103.6353 | 370.7624
480.4783 | 341.3380
243.1850 | 378.6852
293.1400 | 13.6863 | | a
P | 2
97
99 | 7 9 P | 49
51 | 8 8 2
5 4 8 | 2 2 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2
77
87 | 8 8 2 8 4 8 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | 2 8 2 4 5 4 5 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6 5 | 25 m | 1
25
26 | 1
25
26 | 85
82 | | SUM OF SQUARES | 701.8295
12394.1705
13C96.0000 | 259.2936
6019.2571
6278.5507 | 3.1645
114.2778
117.4423 | 887.0035
8959.4267
5846.4302 | 4445.1193
21791.1029
26236.2222 | . 1158.2170
23504.1705
24662.3875 | 145.4851
8014.9385
8100.4235 | 676-2109
849d-0949
9168-3059 | 370.7824
12011.9583
12382.7407 | 351.3380
6079.5250
6460.9630 | 378-6352
7328-5030
7707-1852 | 27.3726
851.6154
878.9880 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GRUUPS
TUTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS
WITHIN GROUPS
TJIAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS WITHIN GROUPS | BETWEEN GROUPS WITHIN GROUPS TUTAL | DEINEEN GROUPS
Within Groups
13 Tal | BETWEEN GROUPS
WITHIN GROUPS
13 TAL | DETWEEN GROUPS
WITHIN GROUPS
10TAL | BETWEEN GRUUPS
WITHIN GROUPS
TOTAL | BEINEEN GROUPS
RITHIN GROUPS
IJTAL | | TOT AL | 100
87.600
11.501 | 69
89.855
9.ėט9 | 52
3.673
1.517 | 86
49.081
10.763 | 90
60-444
17-169 | 80
47.912
17.669 | 85
54.082
9.856 | 85
51.741
10.447 | 27
64.481
21.823 | 27
69.963
15.764 | 27
67-259
17-217 | 83
6.948
3.274 | | ĸ | 10
50.230
9.438 | 3
98.000
9.165 | 2
4.500
0.707 | 4
57.550
15.322 | 10
75-100
13-00-8 | 9
57.661
16.538 | 10
54-500
10-320 | 9
57.550
12.063 | 000 | 202
03 | 000 | 6
8.333
2.338 | | 7 | 78
88-346
11-552 | 56
49. 85 <i>1</i>
9. 732 | 45
3.578
1.515 | 61
48. 657
3. 931 | 69
60. 623
16. 413 | 61
47.344
16.952 | 65
54.569
9.884 | 66
51. 864
9. 920 | 24
65.752
21.431 | 24
71.292
15.479 | 24
64.563
16.741 | 65
7.077
3.144 | | ~ | 12
80.583
10.942 | 10
87.400
8.449 | 5
4.200
1.789 | 10
44.300
7.973 | 11
46.000
13.914 | 10
42-600
21-277 | 10
50.500
9.455 | 10
45.7JU
10.1e6 | 3
54 abdu
26 - 907 | 3
59.433
16.862 | 3
56.66 <i>7</i>
21.008 | 12
5.833
4.174 | | | 2 5 7 | × £ 3 | 250 | 2 T 7 | \$ \$ N | 5 · 5 · 3 | 2.2 3 | e = 3 | 7 ₹ Å | # £ 3 | 3 .c .g | 2 - 3 | | ~ | 'n | 33 | 36 | 04 | 7 | 45 | 43 | 4 | A. | ;
; | 1.5 | 4
30 | LLUYD 1-14: READING DEFILIENCY ANALYSIS OF VAKIANCE RUNS LLJYU 1-14C: NEGRU FEMALES - LOW SES | JMEGA SQ. | 77 | 2 | 13 | 10 | 25 | • | 19 | <i>[</i> 9 | 21 | |----------------|--|--|---------------------------------|--|-----------------------------------|-------------------------------------|--|--|-------------------------------------| | JAEG | 0.0012 | 0.0410 | -0.0013 | 0.0301 | 0.0152 | 990°° | -0.0167 | 0.0167 | 0.7110 | | F RATIO | 1.0506 | 2.7942 | 0.9467 | 2.2555 | 1.6333 | 3.9588 | 0.3446 | 1980-1 | 143.6596 | | MEAN SQUARE | 13.0108 | 42.6039
15.2473 | 9.6419
10.2268 | 21.9786
9.7445 | 23.7019 | 54.2324
13.6993 | 3.5830
10.3964 | 21.3194 | 21,96.0104 | | JG. | 8
8
8
8 | 63
83 | 73
61
61 | 2 4 8
8 8 8 | 2
79
81 | 80
85
85 | 722 | 785 | 2
113
115 | | SUM UF SQUARES | 26.0216
1003.1212
1029.1429 | 45.2078
1235.0303
1320.2341 | 19.3638
807.9167
627.2805 | 43.9572
760.0075
804.0247 | 47.403d
1140.4010
1193.8049 | 104.4644
1095.9449
12 C4.4096 | 7.1660
800.5215
807.6875 | 42.6349
946.2530
1 C2 8.8889 | 4394.2207
1727.8148
6121.0345 | | SUURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GRUUPS #ITHIN GRUUPS | BETHEEN GROUPS
WITHIN GROUPS
TUTAL | BETHEEN GROUPS HITHIN GROUPS | BETWEEN GROUPS NITHIN GROUPS | BETHEEN GRUUPS
MITHIN GROUPS
1JIAL | DETWEEN GROUPS
WITHIN GROUPS
IJTAL | BETWEEN GHOUPS WITHIN GROUPS | | TUTAL | 84
0.286
3.521 | 84
9.595
3.968 | 82
5-622
3-196 | 81
8-272
3-170 | 62
6.951
3.839 | 83
6.916
3.832 | 80
7.562
3.197 | 81
7.704
3.586 | 116
99.207
7.296 | | *1 | 6
5.333
3.615 | 6
12.167
4.622 | 6
5.000
2.191 | 6
10.833
3.545 | 6
6.500
6.025 | 6
9. 833
5. 0 <i>5</i> 7 | 6
8.530
1.871 | 6
10.000
4.362 | 13
112,231
3,652 | | ~ | 66
6.576
3.625 | 66
9.712
3.757 | 64
5.875
3.425 | 63
8•127
3•129 | 64
7.109
3.577 | 65
7.040
3.642 | 62
7.548
3.243 | 63
7.667
3.469 | 88
99• 341
3• 965 | | ~ | 12
5-167
2-75d | 12
7.667
4.376 | 12
4.563
2.021 | 12
7.750
2.864 | 12
5.333
3.798 | 12
4.750
3.30¢ | 12
7 • 167
3 • 569 | 12
6•750
3•621 | 15
87 • 133
3 • 756 | | | 2 E V | 5 E 3 | 3. £ y | 2 K 0 | 2 % .7 | 2 £ 3 | 5 E 3 | \$ 25 ·V | \$ 2 0 | N N N N N LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: NEGRO FEMALES - High IQ | • | ö | | : | | | | | | |---------------------------------------|--|---------------------|---|-----------------|---------|-----|-------|-------| | | • | | ! | • | • | • | • | | | • | 0.0 | | ; | 0.0 | 0.0 | 0.0 | 0:0 | | | 000.666 | • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.0 • 0.00.0 | | • 0.0 • 0.00 • 000 • 0.0 | • | •:
O | • | • | | | | • | | | ċ | ċ | ö | o. | | | WITH ELIMINATION CODE FOR CLAS. VAR = | 0.0 | | 0 | •000• | • | • | • | | | CLA | • | | . | | 0 | 0 | 0 | | | FOR | 0.0 | | 0.6 | • | • | • | • | | | C00 | • | | | • | • | • | • | | | ATION | 0.0 | | 0.0 | • | • | • | • | 00 | | LIMIN | • | 8 | • | 0.0 | 0.0 | 0.0 | 0 | 0.666 | | TH E | 0.0 | 175.000 | 0.0 | • | • | • | • | • | | 3 | • 000 | 10 | | 0.0 . 0.0 . 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | 15# | . 990. | 86.000 TO | 0.0 | • | • | • | . 0.0 | • | | VAR = | 8.000 | 86 | | ö | ö | • | • | • | | NOI | 10 | 90 | 7 AR | • | • | • | • | • | | CLASSIFICATION VAR = # 57 | 91.000, 108 | WITH RANGE OF | TO 5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | LASS | н | WI TH | RS 1 | • | • | • | • | • | | | IMITS | 60 | FOR VA | 0.0 | | | 0.0 | | | 57 | ER L | * | 050 | • | • | • | 0.0 | • | | LES = | M NPP | VAR = | EXCLU | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | IR I A B | ,EGU8 | 10N |)
BE | ٠ | • | • | • | • | | NO OF VARIABLES = 57 | CLAS CATEGURY UPPER LIMITS = | RESTRICTION VAR = # | CODES TO BE EXCLUDED FOR VARS 1 TO 57 ARE | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | | | | | | | | | | | # OF OBS TO BE INCLUDED THIS PROBLEM = 259 DATA TO BE READ FROM TAPE WITHOUT REWIND FORMAT OF DATA IS (57F6.0) MAX # OF OBS TO BE INCLUDED GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVERS GROUP 3 = OVERACHIEVERS LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | õ | |---------| | High | | , | | FEMALES | | NEGRO | | 1-14E: | | LLOYD | | OMEGA SQ | -0.0073 | 0.0893 | 0.0714 | -0.0040 | 0.0559 | 6960*0 | 0.0363 | 0.0291 | 0.0345 | 0600*0- | 0.0075 | 0.0754 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | 0.5979 | 6.1001 | 5.0347 | 0.7807 | 4.1690 | 6.6859 | 2.9778 | 2.6613 | 2.6101 | 0.5847 | 1.3474 | 4.8353 | | MEAN SQUARE | 19.3823
32.4158 | 8.4873
1.3913 | 8.0796
1.6048 | 5.9910
7.6738 | 5.7519
1.3797 | 3.6970
0.5530 | 76.5376
25.7028 | 251.5260
94.5119 | 5.9612 | 1.2769 | 2.3055 | 6.9313
1.4335 | | Ð | 2
108
110 | 2
101
103 | 102
104 | 2
108
110 | 104
104
104 | 2
103
105 | 2
102
104 | 2
108
110 | 2
89
89 | 2 0 2
35 0 7 | 38 5
31 83 7 | 93 5 | | SUM OF SQUARES | 38.7646
3500.9111
3539.6757 | 16.9747
140.5253
157.5000 | 16.1591
163.6885
179.8476 | 11.9821
828.7747
840.7568 | 11.5038
143.4869
154.9907 | 7.3941
56.9550
64.3491 | 153.0752
2621.6867
2774.7619 | 503.0519
10207.2904
10710.3423 | 11.9225
198.6997
210.6222 | 2.5539
196.5644
199.1183 | 4.6110
152.2912
156.9022 | 13.8626
130.4459
144.3085 | | SOURCE | BETHEEN GROUPS
WITHIN GROUPS
TOTAL |
BETWEEN | TOTAL | 111
138,946
5,673 | 104
5.250
1.237 | 105
4.962
1.315 | 111
4.595
2.765 | 107
6.009
1.209 | 106
4.538
0.783 | 105
21.952
5.165 | 111
98.721
9.867 | 90
2.644
1.538 | 93
2.538
1.471 | . 92
2.533
1.313 | 94
2.223
1.246 | | ю | 14
138.714
5.195 | 13
4.308
1.750 | 13
3.923
1.891 | 14
3.786
2.547 | 14
5-214
1-477 | 13
3-846
1-214 | 12
25.000
4.767 | 14
104.143
11.224 | 3.100
1.449 | 10
2.600
1.174 | 2.778
1.787 | 10
3.100
1.969 | | ~ | 86
138. 756
5.445 | 82
5.317
1.132 | 81
5.123
1.088 | 86
4.756
2.799 | 82
6.085
1.124 | 83
4.614
0.678 | 83
21.747
5.146 | 86
97.733
9.513 | 69
2 <u>449</u> .
1.430 | 73
2.466
1.454 | 73
2.425
1.279 | 74
2.027
1.098 | | - | 11
140.727
7.938 | 6.000 | 11
5-000
1-612 | 11
4.364
2.803 | 11
6.455
1.128 | 10
4.800
0.422 | 10
20.000
4.714 | 11
99.545
9.363 | 11
3.455
2.018 | 10
3.000
1.886 | 10
3.100
0.994 | 10
2.800
0.919 | | | Z # S | Z # S | SES | N # Q | Z E S | SES | z z S | ZES | N K S | Z E S | N E S | N M O | | | | 8 | 6 | • | S. | 9 | ~ | • | • | 2 | ======================================= | 21 | LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: NEGRO FEMALES - High IQ | 8 | | | _ | | | | • | | | | ! | _ | |----------------|--|--|--|--|--|-------------------------------------|--|--|--|--|--|--| | OMEGA | 0.1342 | 0.5660 | -0.0181 | 0.3560 | 0.0749 | 0.5087 | 0.1714 | 0.1644 | 0.0070 | 0.0183 | 0.0029 | 0.0067 | | F RATIO | 5.8043 | 62.2992 | 0.2005 | 27.2110 | 3.8751 | 80.4386 | 12.3785 | 11.8236 | 1.3720 | 1.9796 | 1.1491 | 1.3536 | | HEAN SQUARE | 302.4849
52.1140 | 3365.8623
54.0273 | 0.0403 | 2291.2153 | 723.0698
186.5932 | 2909.5885 | 577.4380 | 592.1675
50.0835 | 56.7115 | 86.1908
43.5393 | 58.2354
50.6779 | 76.7969
56.7347 | | 10 | 59
61 | 93 | 2
87
89 | 2 5 6 | 2 99
20 | 2
108
110 | 2
107
109 | 2
107
109 | 102 | 102
104
104 | 2 %
101 | 102
104 | | SUM OF SQUARES | 604.9698
3074.7237
3679.6935 | 6731.7246
4916.4882
11648.2128 | 0.0806
17.4750
17.5556 | 4582,4307
7662,3778
12244,8085 | 1446.1396
12688.3393
14134.4789 | 5819.1769
3904.5168
9725.6937 | 1154-8760
4991-3876
6146-2636 | 1184,3349
5354,9378
6543,2727 | 113,4229
4216,1390
4329,5619 | 172.3817
4441.0088
4613.3905 | 116-4708
5017-1076
5133-5784 | 153.5938
5786.9395
5940.5333 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 62
37.855
7.767 | 94
53.617
11.191 | 90
2.778
0.444 | 94
58.723
11.475 | 71
98.366
14.210 | 111
55.144
9.403 | 110
58.282
7.509 | 110
60.545
7.748 | 105
33.581
6.452 | 105
33.790
6.660 | 102
32.304
7.129 | 105
30.933
7.558 | | m | 5
46.600
4.099 | 14
70.357
7.099 | 10
2.700
0.483 | 14
74.143
13.496 | 7
111.571
17.681 | 14
71.214
6.399 | 14
65.286
5.497 | 14
66.857
6.237 | 14
34.857
6.347 | 14
35.929
6.673 | 13
34.000
6.795 | 14
32.000
8.096 | | 8 | 46
37.978
7.594 | 71
52.521
7.223 | 72
2.792
0.442 | 71
57.056
8.500 | 56
97.375
13.442 | 86
54.314
5.930 | 85
57.965
7.057 | 85
60.482
6.933 | 81
33.728
6.237 | 81
33.827
6.446 | 79
32,380
7,238 | 81
31.198
7.589 | | | 11
33,364
6,423 | 9
36.222
8.729 | 8
2.75ò
0.463 | 9
47.889
5.442 | 8
93.750
11.184 | 11
41.182
6.210 | 11
51.818
6.447 | 11
53.000
9.033 | 10
30.600
8.030 | 10
30.500
7.735 | 10
29.500
6.468 | 10
27.300
6.038 | | 7 | 13 M
S0 | 14 N N S O S O S O S O S O S O S O S O S O | N SI SD SD | 16 SD | N
17 M
SD | 18
81
SD |
153 | 20 M
SD | ZI N SD | 22 # SD SD | 23 K
SD
SD | 24 M
SD | | | | | | | - 91 | - | 153 | | | | | | ERIC Full Text Provided by ERIC ## LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14E: NEGRO FEMALES - High IQ | OMEGA SQ | 20 | * E | 121 | 95 | 693 | 83 | 117 | 00 | 72. | 01 | 245 | 151 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | OMEG | -0.0107 | 0.0074 | -0.0851 | -0.0095 | -0.0193 | -0.0185 | -0-0017 | 0.0500 | 0.0227 | 0.0107 | -0.0242 | 0.0051 | | F RATIO | 0.7151 | 1.3891 | 0.0594 | 0.5118 | 0.0172 | 0.0741 | 0.9101 | 3.7087 | 2.1726 | 1.4940 | 0.0886 | 1.1761 | | MEAN SQUARE | 42.6826
59.6889 | 57.5355
41.4194 | 5.9554
100.2721 | 26.3058
51.3990 | 0.7562
44.0395 | 5.1484
69.4988 | 59.2198
65.0702 | 251.8268
67.9021 | 155.4810
71.5640 | 90.9792
60.8981 | 4.3015
48.5710 | 39.5865
33.6581 | | 9 | 51
53 | 102
104 | 2
23
23 | 2
101
103 | 2
101
103 | 2
99
101 | 2
100
102 | 2
100
102 | 2
98
100 | 2 88 0
90 88 0 | 2
7
7
8 | 2 9 8 9 8 9 | | SUM OF SQUARES | 85.3652
3044.1348
3129.5000 | 115.0711
4224.7765
4339.8476 | 11.9107
2105.7143
2117.6250 | 52.6117
5191.3018
5243.9135 | 1.5125
4447.9875
4449.5000 | 10.2967
6880.3797
6890.6765 | 118.4396
6507.0167
6625.4563 | 503.6535
6790.2106
7293.8641 | 310.9621
7013.2755
7324.2376 | 181.9585
5359.0306
5540.9890 | 8.6030
3594.2541
3602.8571 | 79.1731
2221.4356
2300.6087 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 54
30.833
7.684 | 105
36.295
6.460 | 24
33.625
9.595 | 104
37.471
7.135 | 104
37.250
6.573 | 102
35.206
8.260 | 103
36.447
8.059 | 103
35.223
8.456 | 101
33.277
8.558 | 91
31.297
7.846 | 77
31.571
6.885 | 69
30.696
5.817 | | m | 32.333
10.693 | 14
37.000
6.026 | 7
32.571
12.164 | 14
39.143
6.062 | 37.000
7.666 | 14
36.000
6.312 | 12
37.583
9.839 | 13
39.923
6.677 | 12
34.833
9.552 | 10
34.800
6.477 | 10
32.000
8.641 | 8
33.625
5.655 | | 8 | 47
31.106
7.218 | 81
36.568
6.557 | 16
34,000
9,011 | 80
37.312
7.515 | 80
37.262
6.573 | 79
35.089
8.502 | 81
36.667
7.538 | 80
35.037
8.434 | 79
33.696
8.279 | 72
31.125
7.771 | 61
31.410
6.756 | 55
30.364
5.691 | | : - | 4
26.500
11.818 | 10
33.100
5.896 | 1
35.000
0.0 | 10
36.400
5.296 | 37.500 | 9
35.000
9.513 | 10
33.300
9.978 | 10
30.600
8.409 | 10
28.100
8.582 | 9
28.778
9.311 | 6
32.500
6.058 | 6
29.833
7.055 | | • | NES | ZIS | Z X S | Z Z S | :
: z = 0 | SXS | z x S | N I S | Z I S | Z Æ S | N M C | <u> </u> | | | 25 | · 9 2 | 27 | 28 | 53 | 30 | 31 | 32 | 33 | 34 | 35 | 36 | ⁹² 154 LLGVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Text Provided by ERIC LLOYD 1-14E: NEGRO FEMALES - High IQ | ONEGA SQ | 0980. | 0.0630 | 0600-0- | 0.1745 | 0.0949 | 0.0056 | 0.0374 | 0.1217 | 0.0164 | 0.0294 | 0.0341 | 0.0046 | |----------------|--|--|--|--|--|--------------------------------------|--|--|--|--|--|--------------------------------------| | F RATIO | 5.7266 | 4.0238 | 1169.0 | 10.1946 | 5.7167 | 1.2452 | 2.6299 | 6.8885 | 1.2577 | 1.4688 | 1.5472 | 1.2256 | | MEAN SQUARE | 506.5092
88.4486 | 365.7587 | 1.2794 | 911.1474 | 192.2457 | 420.4803 | 178.9535
68.0452 | 551.3061
80.0327 | 606.4297
482.1629 | 509.1682
346.6562 | 555.2404
358.8676 | 13.2778 | | 9 | 95
97 | 2
87
89 | 66
68
68 | 8 8 8 | 89
89 | ~ 45 % | · ~ # & | ~ 22 45 | 28
30 | 28 30 | 28
30 | ~## | | SUM OF SQUARES | 1013.0184
8402.6143
9415.6327 | 731.5175
7908.2714
8639.7889 | 2.5589
122.0788
124.6377 | 1822.2947
7507.5214
9329.8161 | 2198.0111
16725.3778
18923.3889 | 840.9606
28365.1083
29206.0690 | 357.9070
5511.6644
5869.5714 | 1102.6122
6562.6819
7665.2941 | 1212.8594
13500.5600
14713.4194 | 1018-3363
9706-3733
10724-7097 | 1110.4809
10048.2933
11158.7742 | 26.5557
1018.4134
1044.9691 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN-GROUPS | BETWEEN GROUPS
Within Groups
Total | BETWEEN GROUPS -MITHIN GROUPS -TOTAL | | TOTAL | 98
93.061
9.852 | 90
93.189
9.853 | 69
3.594
1.354 | 87
52.954
10.416 |
90
64.611
14.582 | 87
52.103
18.428 | 84
58.071
8.409 | 85
55.765
9.553 | 31
70.226
22.146 | 31
73.097
18.907 | 31
71.677
19.286 | 97
7.897
3.299 | | m | 11
98.909
10.977 | 100.500
8.580 | 8
3.750
0.707 | 8
64.625
10.295 | 8
72.250
15.323 | 8
61.125
24.351 | 8
61.125
9.448 | 7
64.571
9.744 | 3
82.000
33.151 | 3
85.333
30.860 | 3.
83.667
32.005 | 11
9.273
3.197 | | ~ | 77
93.260
9.397 | 70
92.757
9.836 | 55
3.509
1.399 | 69
52.841
9.488 | 72
65.556
13.810 | 69
51.667
17.697 | 67
58.448
8.223 | 68
55.956
9.000 | 25
70.760
20.263 | 25
73.280
17.360 | 25
72.040
17.220 | 76
7.789
3.259 | | | 10
85.100
7.355 | 10
88.900
7.965 | 6
4.167
1.602 | 10
44.400
8.462 | 10
51.700
13.081 | 10
47.900
18.003 | 9
52.556
7.282 | 10
48.300
7.931 | 3
54.000
26.907 | 3
59.333
16.862 | 3
5 6.667
21.008 | 10
7.200
3.645 | | | N X N
O | Z I S | Z I G | Z I S | Z I S | Z X S | N R S | Z Z S | Z I S | Z I S | N I S | z z S | | 7 | 7. | 80 | 33 | 0 | 14 | 7, | £3 | 4 | 2 | 94 | 14 | 8 | - 93 - LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full least Provided by ERIC OMEGA SQ 0.0249 0.1143 0.0158 0.0806 0.0099 0.1113 0.0955 0.1165 0.7093 1 | F RATIO | 2.2374 | 7.3240 | 1.7721 | 5.2509 | 1.4827 | 7.0769 | 5.9635 | 7.1329 | 136.3949 | |----------------|---------------------------------|------------------------------------|--|--|--|--|--|--|----------------| | MEAN SQUARE | 31.1445
13.9197 | 103.5990 | . 22.5178
12.7065 | 60.9883
11.6149 | 25-8707 | 85-1128
12-0268 | 52.6536
8.8293 | 88.6956
12.4347 | 2363.2179 | | 96 | ~*3 | 25.5 | 288 | ~ \$ \$ | ~\$\$ | ~ \$ \$ | 3 1 S | 28 28 | ~ ~ ~ | | SUM OF SQUARES | 62.2889 | 207.1980
1343.7816
1550.9796 | 45.0355
1181.7041
1226.7396 | 121.9765
1091.7967
1213.7732 | 51.7415
1640.1967
1691.9381 | 170.2256
1130.5167
1300.7423 | 105.3072
803.4694
908.7766 | 177.3911
1119.1250
1296.5161 | 4726.4359 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS | EN G
N GR | BETWEEN GROUPS
NITHIN GROUPS
TOTAL | BETHEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
MITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS | | TOTAL | 7.052 | 98
11-102
3-999 | 96
6.615
3.593 | 97
9.340
3.556 | 97
7.443
4.198 | 97
7.948
3.681 | 94
8.670
3.126 | 93
9.194
3.754 | 111 | | æ | 12 6.667 | 12 14.750 | 12
7.750
4.634 | 12
12.250
3.596 | 12
9.250
5.754 | 12
10,750
4,634 | 12
11.417
2.906 | 12
12.750
3.769 | ** | | 2 | 75 | 76
10. 789 | 74
6.662
3.536 | 75
9.027
3.503 | 75
7.293
3.879 | 75
.74867.
3.334 | 72
8.319
3.053 | 72
8.736
3.525 | 98 | | | 10 | 10 | 10 4-900 | 10
8.200
2.150 | 10 6.400 | 10
5.200
2.821 | 10
7.900
2.331 | 9
8.111
3.180 | = | | | 2 % | | | z z g | Z II S | N M OS | Z ± S | N E G | . z : | | 7 | 6 | 20 | . 15 | . 25 | 156 | | S. | 95 | 1 | 0.0 0.0 999.000 0.0 WITH ELIMINATION CODE FOR CLAS. VAR = 0.0 0.0 •, 0.0 • 85.000 0.0 0000 0.0 0000 0.0000 0.0 0.000 DATA TO BE READ FROM TAPE WITHOUT REWIND 259 FORMAT OF DATA IS (57F6.0) MAX # OF OBS TO BE INCLUDED THIS PROBLEM = GROUP 1 = UNDERACHIEVERS GROUP 2 = AVERAGE ACHIEVE GROUP 3 = OVERACHIEVERS = UNDERACHIEVERS = AVERAGE ACHIEVERS > LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS ERIC Full Tast Provided by ERIC | ğ | |---------| | Low I | | | | FEMALES | | NEGRO | | 1-1408 | | LLOYD | | - : | - | | 2 , | | w . | TOTAL | SOURCE SOURCE | SUN OF SQUARES | <u>*</u> ~ | MEAN SQUARE | F RATIO | OMEGA SQ
0.0049 | |--|---|---|-------------------------|---|------------------------|-------|--|--------------------------------------|--|------------------|---------|--------------------| | N 10 62 13 85
H 149.200 147.129 153.154 148.294
SD 19.487 11.674 12.335 12.889 | 10 62 13
149.200 147.129 153.154
19.487 11.674 12.335 | 62 13
147.129 153.154
11.674 12.335 | 13
153。154
12。335 | | 85
148.294
12.88 | * 0 | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 399.3870
13556.2600
13955.6471 | 3 | 165.3202 | 102-1 | | | N 10 57 13 80
H 4.700 5.211 5.154 5.137
SD 1.636 1.114 1.519 1.250 | 10 57 13
4.700 5.211 5.154
1.636 1.114 1.519 | 57 13
5.211 5.154
1.114 1.519 | 13
5.154
1.519 | | 80
5.137
1.250 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 2.2215
121.2660
123.4875 | 27.2 | 1.1108 | 0.7053 | -0°0014 | | N 10 56 13 79
M 4.800 4.696 5.385 4.823
SD 1.033 1.513 0.961 1.394 | 10 56 13
4.800 4.696 5.385
1.033 1.513 0.961 | 56 13
4.696 5.385
1.513 0.961 | 13
5,385
0,961 | | 79
4.823
1.394 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 5.0028
146.5162
151.5190 | 2 2 8 | 2.5014
1.9278 | 1.2975 | 0.0075 | | N 10 62 13 85
M 4.800 4.452 4.385 4.482
SD 2.860 2.895 3.380 2.934 | 10 62 13
4.800 4.452 4.385
2.860 2.895 3.380 | 62 13
4.452 4.385
2.895 3.380 | 13
4.385
3.380 | | 85
4.482
2.934 | | BETWEEN CROUPS
WITHIN GROUPS
TOTAL | 1.1918
722.0318
723.2235 | 88 84 | 0.5959
8.8053 | 0.0677 | -0-0224 | | N 10 55 13 78
M 6.300 5.982 6.000 6.026
SD 0.823 1.354 0.913 1.227 | 10 55 13
6.300 5.982 6.000
0 0.823 1.354 0.913 | 55 13
5.982 6.000
1.354 0.913 | 13
6.000
0.913 | | 78
6.026
1.227 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 0.8669
115.0818
115.9487 | 2
2
1 | 0.4334 | 0.2825 | -0-0187 | | N 10 53 13 76
M 4.600 4.453 4.538 4.487
SD 0.699 0.695 0.660 0.683 | 10 53 13
4.600 4.453 4.538
0 0.699 0.695 0.660 | 53 13
4.453 4.538
0.695 0.660 | 13
4.538
0.660 | | 76
4.487
0.683 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 0.2240
34.7628
34.9868 | 22
27 | 0.1120 | 0.2352 | -0.0205 | | N 10 60 12 82
M 14.500 15.750 20.417 16.280
SD 4.972 4.201 4.981 4.702 | 10 60 12
14.500 15.750 20.417 1
0 4.972 4.201 4.981 | 60 12
15.750 20.417 1
4.201 4.981 | 12
20.417
4.981 | - | 82
16.280
4.702 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 253.8821
1536.6667
1790.5488 | 2
79
81 | 126.9411 | 6.5260 | 0.1188 | | N 10 62 13 85
M 71.100 73.677 71.385 73.024
SD 10.290 8.548 9.709 8.891 | 10 62 13
71-100 73-677 71-385 7
0 10-290 8-548 9-709 | 62 13
73.677 71.385 7
8.548 9.709 | 13
71.385
9.709 | _ | 85
73.024
8.891 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 98.4276
6541.5253
6639.9529 | 2 2 8 8 8 2 8 4 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 49.2138 | 0.6169 | -0-0001 | | N 7 47 9 63
M 4.000 3.234 3.889 3.413
SD 2.082 1.591 2.804 1.846 | 7 47 9
4.000 3.234 3.889
2.082 1.591 2.804 | 47
3.234 3.889
1.591 2.804 | 9
3.889
2.804 | | 63
3.413
1.846 | | BETWEEN GROUPS
Within Groups
Total | 5.9554
205.3144
211.2698 | 7
9
9
9
9 | 2.9777 | 0.8702 | -0.0041 | | N 8 5J 10 68
M 3.625 2.880 3.600 3.074
SD 2.200 1.409 2.066 1.624 | 8 5.3 10
3.625 2.880 3.600
2.200 1.409 2.066 | 5.3 10
2.880 3.600
1.409 2.066 | 10
3.600
2.066 | | 68
3.074
1.624 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 7.0774
169.5550
176.6324 | 2
69
7 | 3.5387
2.6085 | 1,3566 | 0.0104 | | N 9 52 9 70
M 3.222 3.058 2.889 3.057
SD 1.202 1.447 1.453 1.403 | 9 52 9
3.222 3.058 2.889
1.202 1.447 1.453 | 52 9
3.058 2.889
1.447 1.453 | 9
2.889
1.453 | | 70
3.057
1.403 | | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | 0.5001
135.2714
135.7714 | 2
69 | 0.2500 | 0.1238 | -0.0257 | | N 10 54 10 74
H 3.500 2.870 3.300 3.014
SD 1.080 1.388 1.252 1.340 | 10 54 10
3.500 2.870 3.300
1.080 1.388 1.252 | 54 10
2.870 3.300
1.388 1.252 | 10
3-300
1-252 | | 74
3.014
1.340 | | BETWEEN GROUPS
Within Groups
Total | 4.2939
126.6926
130.9865 | 222 | 2.1469 | 1.2032 | 0.0055 | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | ğ | |---------| | 707 | | ٠ | | ES | | A | | FEMALES | | 8 | | NEGRO | | | | ë | | 1-140: | | ÷ | | OVO | | בים. | | _ | | ONEGA SO | 0.1436 | 0.4730 | 0.0281 | 0.4164 | 0.0126 | 0.4833 | 0.0815 | 0.1486 | 0.0642 | 0.0741 | 0.0852 | 0.0611 | |----------------|----------------|----------------|----------------|----------------|----------------|------------------------------------|----------------|---------------------|----------------|----------------|-----------------|----------------| | F RATIO | 4.9470 | 34.2095 | 1.9235 | 27.3985 | 1.3437 | 40.7563 | 4.7258 | 8.3319 | 3.4024 | 3.7993 | 3.9340 | 3.2796 | | HEAN SQUARE | 220.8912 | 1926.9274 | 0.4079 | 1350.2141 | 319.6952 | 1797.7252 | 214.2797 | 467.5708
56.1180 | 170.7041 | 192.7647 | 212.6396 | 151-4882 | | Ą | ~‡\$ | 71 73 | 63 | 212 | 53
53 | ~ 22 % | 8 8 7 8 8 8 | 81
83 | 2
67
69 | 64
64 | ~ 9 3 | 27.5 | | SUM OF SQUARES | 441.7824 | 3853.8549 | 0.8157 | 2700.4283 | 639.3905 | 3595.4504 | 428.5594 | 935.1416 | 341.4082 | 385.5294 | 425.2792 | 302.9764 | | | 1964.6857 | 3999.2397 | 12.9343 _ | 3498.9231 |
12133.9429 | 3616.9496 | 3672.7263 | 4545.5608 | 3361.4632 | 3399.3420 | 3243.1335 | 3094.8093 | | | 2406.4681 | 7853.0946 | 13.7500 | 6199.3514 | 12773.3333 | 7212.4000 | 4101.2857 | 5480.7024 | 3702.8714 | 3784.8714 | 3668.4127 | 3397.7857 | | SOURCE | BETWEEN GROUPS | | WITHIN GROUPS MITHIN GROUPS | WITHIN GROUPS | WITHIN GROUPS | | | TOTAL | TOTAL | 47 | 74 | 64 | 74 | 54 | 85 | 84 | 84 | 70 | 70 | 63 | 70 | | | 29.894 | 36.770 | 2.312 | 48.189 | 84.556 | 41.400 | 48.643 | 49.774 | 24.243 | 24.243 | 25.270 | 22.214 | | | 7.233 | 10.372 | 0.467 | 9.215 | 15.524 | 9.266 | 7.029 | 8.126 | 7.326 | 7.40\$ | 7.692 | 7.017 | | m | 4 | 12 | 7 | 12 | 7 | 13 | 12 | 13 | 11 | 11 | 9 | 11 | | | 36.000 | 50.583 | 2.429 | 58.250 | 86.143 | 53.231 | 51,917 | 54.923 | 29.000 | 29.364 | 31.111 | 23.727 | | | 4.163 | 6.653 | 0.535 | 8.390 | 13.570 | 6.723 | 6,529 | 9.269 | 8.198 | 8.559 | 7.881 | 9.477 | | 8 | 35 | 52 | 50 | 52 | 42 | 62 | 62 | 61 | 51 | 51 | 46 | 51 | | | 30.543 | 35.962 | 2.340 | 48.212 | 85.571 | 41.065 | 48.887 | 49.934 | 23.706 | 23.627 | 24.761 | 22.784 | | | 7.014 | 8.083 | 0.479 | 6.060 | 15.593 | 6.767 | 6.516 | 7.090 | 7.111 | 7.079 | 7.558 | 6.420 | | - | 8 | 10 | 7 | 10 | 5 | 10 | 10 | 10 | 8 | 8 | 8 | 8 | | | 24.000 | 24.400 | 2.000 | 36.000 | 73.800 | 28.100 | 43.200 | 42-100 | 21-125 | 21.125 | 21. 62 5 | 16.500 | | | 5.855 | 4.477 | 0.0 | 9.730 | 16.285 | 5.587 | 8.257 | 7-445 | 4-794 | 4.794 | 5.012 | 4.408 | | 7 | 13 M
SD | 14 N S | 15 M
SO | N # 08 | N # 20 | Z E S
8 1
97 - | 2 = S |
 | 21 M SO | 22 # SD | 23 R S | 24 R SD | ERIC Full fast Provided by ERIC LLOVD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14D: NEGRO FEMALES - Low IQ | IMEGA SO | -0.0236 | 0.0740 | -0.1472 | 0.0491 | -0.0083 | 0.0729 | 0.1210 | 0.0441 | 0.0569 | 0990.0 | 0.0110 | -0.0398 | |----------------|--|--|--|--|--|--|--|--|--|--|--|--| | F RATIO | 0.5612 | 3.6754 | 0.3583 | 2.7826 | 0.7174 | 3.6337 | 5.9566 | 2.4762 | 2.5692 | 2.3418 | 1.2660 | 0.2727 | | MEAN SQUARE | 32.9969
58.7958 | 167.6549
45.6148 | 22.5333
62.8889 | 142.4887
51.2065 | 40.0025
55.7575 | 341.3336
93.9359 | 383.8897
64.4474 | 167.8993
67.8066 | 196.9301 | 105.7130 | 25.9286 | 11.6327
42.6532 | | 70 | 1 1 1 1 1 8 1 | 7 4 9 | ⊶ mj•r | ~ \$ \$
\$ | 2 9 8
9 9 9 | ~ 4 9 | 2
69
71 | 61
63 | 49
51 | 332 | 22 23 | 1
17
18 | | SUM OF SQUARES | 32.9969
999.5294
1032.5263 | 335.3098
2919.3469
3254.6567 | 22.5333
188.6667
211.2000 | 284.9773
3379.6314
3664.6087 | 80.0050
3679.9950
3760.0000 | 682.6672
6011.9000
6694.5672 | 767.7795
4446.8733
5214.6528 | 335.7986
4136.2014
4472.0000 | 393.8601
3755.9091
4149.7692 | 211.4260
1579.9687
1791.3947 | 25.9286
450.5714
476.5000 | 11.6327
725.1042
736.7368 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 19
24.158
7.574 | 67
28-463
7-022 | 5
28.400
7.266 | 69
31.304
7.341 | 69
31.000
7.436 | 67
26.552
10.071 | 72
26.181
8.570 | 64
24.500
8.425 | 52
23.654
9.020 | 38
25.553
6.958 | 24
25.250
4.552 | 19
24.526
6.398 | | m | 28.000
2.828 | 10
33.000
9.238 | 2
31.000
8.485 | 11
33-182
7-508 | 11
32.000
8.660 | 10
31.600
12.747 | 11
33.364
10.838 | 9
25.889
11.816 | 4
33.000
10.132 | 4
32.250
4.787 | 3
28.000
5.292 | 3
26-333
3-215 | | ~ | 17
23.706
7.872 | 49
28. 184
6. 480 | 3
26.667
7.638 | 50
31.760
7.414 | 50
31.240
7.249 | 49
26.714
9.305 | 53
25.377
7.766 | 48
25.188
7.908 | 44
23.045
8.653 | 32
24.906
6.953 | 21
24.857
4.442 | 16
24.187
6.853 | | 1 | 000 | 8
24.500
4.408 | 000 | 8
25.875
4.190 | 8
28.125
7.120 | 8
19a250
7.498 | 8
21.625
4.406 | 7
18.000
3.651 | 21.000 | . 2
22.500
3.536 | 000 | 000 | | 7 | 25 M
SD | 26 M SD | 27 M SD | N 82 · | N W S S S S S S S S S S S S S S S S S S | 2 ± 0
2 € 0 | N 16
OS | 32 H
SD
SD | 33 SS | 34 AS | 35 M
SD
SD | 36 H SD | LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS LLOYD 1-14D: NEGRO FEMALES - LOW IQ | ONEGA SO | 0.2104 | 0.0678 | 0.0746 | 0.1293 | 0.3026 | 0.1675 | 0.0188 | 0.1610 | 0.0129 | -0.0752 | -0-0883 | 0.0683 | |----------------|--|--|----------------------------------|--|--|--|--|--|--|---|--|--| | F RATEO | 9.7922 | 2.2720 | 2.4555 | 4.7875 | 12.2832 | 4.9222 | 1.4979 | 5.7980 | 1.1441 | 0.2308 | 0.1073 | 2.6496 | | HEAN SQUARE | 799.9023 | 111.4576
49.0571 | 3.6736
1.4961 | 361.0500
75.4146 | 2165.6167
176.3076 | 929.5051
188.8395 | 106.2458
70.9303 | 431.8936
74.4901 | 252.1364 | 57.3068 | 16.5000 | 22.9000
8.6429 | | 96 | 63.2 | 32
34 | 1
16
17 | % 6 6 8 2 | 2
49
51 | 38 | 51
51 | 2
44
49 | - 6 OI | 16 01 | . 1 6 0 | ~23 | | SUM OF SQUARES | 1599.8046
5146.3166
6746.1212 | 222.9153
1569.8276
1792.7429 | 3.6736
23.9375
27.6111 | 722.0999
3619.9001
4342.0000 | 4331.2334
8639.0743
12970.3077 | 1859.0103
6798.2205
8657.2308 | 212.4915
3475.5854
3688.0769 | 863.7872
3501.0328
4364.8200 | 252-1364
1983-5000
2235-6364 | 57 .3068
2234.8750
2292.1818 | 16.5000
1383.5000
1400.0000 | 45.8000
363.0000
408.8000 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS. | BETWEEN GROUPS
WITHIN FROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | BETWEEN GROUPS
WITHEN GROUPS
TOTAL | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | | TOTAL | 66
80.424
10.188 | 35
83.486
7.261 | 18
3.722
1.274 | 51
44.000
9.319 | 52
51.615
15.947 | 39
45.385
15.094 | 52
47.192
8.504 | 50
45.940
9.438 | 11
60.182
14.952 | 11
63.727
15.140 | 11
62.000
11.832 | 45
6.267
3.048 | | m | 11
89.182
8.072 | 4
90.500
8.963 | 2
5.000
0.0 | 11
51.091
11.122 | 11
67.000
13.986 | 10
50.900
12.467 | 11
50.545
10.202 | 11
52.545
10.396 | 3
68.000
3.464 | 3
60.000
24.331 | 3
64.000
13.229 | 5
8.000
2.345 | | ~ | 49
79.816
8.995 | 29
82.621
6.889 | 16
3.562
1.263 | 37
41.865
8.080 | 37
49.135
13.604 | 26
45.885
14.586 | 37
46.676
7.937 | 36
44.806
8.127 | 8
57.250
16.731 | 8
65.125
12.253 | 8
61.250
12.151 | 36
6.333
2.918 | | | 69.333
11.057 | 2
82.000
0.0 | 000 | 3
44.333
4.041 | 4
32.250
2.630 | 3
22.667
6.351 | 42.750
7.455 | 35.333
7.371 | 000 | 0000 | 000 | 4
3.500
3.786 | | | | | | | _ | _ | _ | | _ | _ | | | | | SES | N M O | ZES | Z X S | N X N | N M C | Z X Q | ZIS | SEC | NIS | ZIO | SEQ | **161** - 99 ERIC " Full Text Provided by ERIC LLOYD 1-14: READING DEFICIENCY ANALYSIS OF VARIANCE RUNS | _ | |--------| | S | | Low | | ī | | LES | | FEMALE | | NEGRO | | 1-140: | | LOYD | | OMEGA SQ | -0.0357 | 0.0129 | 0.05:2 | 0.0225 | -0.107 | 0.0684 | -0-0406 | -0-0052 | 0.7229 | |----------------|--|--|--|--|--|--|--|--|--| | F RATIO | 0.1728 | 1.3068 | 2.3177 | 1.5168 | 0.7619 | 2.6897 | 0.1228 | 0.8843 | 111.8485 | | MEAN SQUARE | 2.1917
12.6804 | 13.4403 | 22.9312
9.8940 | 15.3472
10.1179 | 9.0889 | 28.1275
10.4577 | 1.9139
15.5893 | 9.1111
10.3037 | 1797.2210
16.0684 | | P. | 444 | ~ 4 9 | 5 6 3 2 | 7 4 4 | 224 | 4 4
4 4 10 | ~? \$ | C C 4 | 8
8
8
8
8 | | SUM OF SQUARES | 4.3833
570.6167
575.0000 | 26.8806
452.5237
479.4043 | 45.8625
425.4419
471.3043 | 30.6944
424.9500
455.6444 | 18.1778
501.0222
519.2000 | 56.2551
449.6797
505.9348 | 3.8278
654.7500
658.5778 | 18-2222
432-7556
450-9778 | 3594.4421
1317.6050
4912.0471 | | SOURCE | BETWEEN GROUPS
WITHIN GROUPS
TOTAL | TOTAL | 48
6.250
3.498 | 47
7.723
3.228 | 46
5.565
3.236 | 45
7.311
3.218 | 45
5.467
3.435 | 46
4.848
3.353 | 45
6-178
3-869 | 45
5.978
3.201 | 85
99.894
7.647 | | m | 5
6.400
4.615 | 7.800
2.168 | 5
3.800
1.789 | 5
9.600
2.966 | 5.200
3.493 | 5
7.600
3.209 | 5
7.000
2.000 | 5
6.600
2.510 | 13
112.538
2.961 | | 8 | 39
6.333
3.413 | 38
7.974
3.123 | 37
6.054
3.358 | 36
7.083
3.157 | 36
5.722
3.559 | 37
4,703
3,213 | 36
6.083
3.974 | 3°
6.111
3.336 |
62
99.210
4.350 | | - | 5.250
3.775 | 5.250 | 3.250
1.500 | 4
6.500
3.697 | 4
3.500
1.732 | 2.750
3.500 | 6.000
5.354 | 4.000
2.449 | 10
87.700
2.541 | | | ZIG | N E O | ZES | z z S | ZES | SES | Z # Q | ZES | N E S | | 7 | 6 | 20 | -51 | 52 | . EC | η υ
4, | 55 | . 95 | 57 | | 162 |